prove-that-2-tan-1-2-3-sin-1-12-13- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 114108 by bemath last updated on 17/Sep/20 provethat2tan−1(23)=sin−1(1213) Answered by bobhans last updated on 17/Sep/20 lettan−1(23)=x→tanx=23and{sinx=213cosx=313⇔2x=sin−1(1213)⇔sin(2x)=sin(sin−1(1213))⇒2sinxcosx=1213⇒2(213)(313)=1213 Answered by Dwaipayan Shikari last updated on 17/Sep/20 tan−1(23+231−49)=tan−1125tanθ=125secθ=135cosθ=513andsinθ=1−52132=1213θ=sin−11213θ=2tan−123(Whichistrue) Answered by physicstutes last updated on 17/Sep/20 ifsinθ=1213,thentanθ=125tan(θ2)=sinθ1+cosθcosθ=513⇒tan(θ2)=12131+513=1218=23hencetan(θ2)=23⇒θ=2tan−1(23)thus,θ=sin−1(1213)=2tan−1(23) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-pi-2-ln-1-sinx-1-sinx-cosx-1-sinx-1-sinx-dx-8-Next Next post: 4-1-11-2-22-3-37-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.