Menu Close

prove-that-2-tan-1-2-3-sin-1-12-13-




Question Number 114108 by bemath last updated on 17/Sep/20
prove that 2 tan^(−1) ((2/3))=sin^(−1) (((12)/(13)))
provethat2tan1(23)=sin1(1213)
Answered by bobhans last updated on 17/Sep/20
let tan^(−1) ((2/3)) = x → tan x = (2/3)  and  { ((sin x= (2/( (√(13)))))),((cos x = (3/( (√(13)))))) :}  ⇔ 2x = sin^(−1) (((12)/(13)))  ⇔sin (2x) = sin (sin^(−1) (((12)/(13))))  ⇒ 2sin x cos x = ((12)/(13))   ⇒2((2/( (√(13)))))((3/( (√(13))))) = ((12)/(13))
lettan1(23)=xtanx=23and{sinx=213cosx=3132x=sin1(1213)sin(2x)=sin(sin1(1213))2sinxcosx=12132(213)(313)=1213
Answered by Dwaipayan Shikari last updated on 17/Sep/20
tan^(−1) ((((2/3)+(2/3))/(1−(4/9))))=tan^(−1) ((12)/5)  tanθ=((12)/5)  secθ=((13)/5)  cosθ=(5/(13))   and sinθ=(√(1−(5^2 /(13^2 )))) =((12)/(13))  θ=sin^(−1) ((12)/(13))  θ=2tan^(−1) (2/3)   (Which is true)
tan1(23+23149)=tan1125tanθ=125secθ=135cosθ=513andsinθ=152132=1213θ=sin11213θ=2tan123(Whichistrue)
Answered by physicstutes last updated on 17/Sep/20
if sin θ = ((12)/(13)), then tan θ = ((12)/5)  tan((θ/2)) = ((sin θ)/(1 + cos θ))  cos θ = (5/(13))   ⇒ tan ((θ/2)) = (((12)/(13))/(1+ (5/(13)))) = ((12)/(18)) =(2/3)  hence tan ((θ/2) ) = (2/3) ⇒ θ = 2 tan^(−1) ((2/3))  thus,  θ = sin^(−1) (((12)/(13))) =2 tan^(−1) ((2/3))
ifsinθ=1213,thentanθ=125tan(θ2)=sinθ1+cosθcosθ=513tan(θ2)=12131+513=1218=23hencetan(θ2)=23θ=2tan1(23)thus,θ=sin1(1213)=2tan1(23)

Leave a Reply

Your email address will not be published. Required fields are marked *