Prove-that-2sin-2-cos-2-sin-sin-I-need-help-immediately-please- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 126562 by mey3nipaba last updated on 21/Dec/20 Provethat2sinθ+ϕ2cosθ−ϕ2=sinθ+sin∅Ineedhelpimmediatelyplease Commented by mr W last updated on 21/Dec/20 θ=θ+φ2+θ−φ2φ=θ+φ2−θ−φ2sinθ=sin(θ+φ2+θ−φ2)=sinθ+φ2cosθ−φ2+cosθ+φ2sinθ−φ2sinφ=sin(θ+φ2−θ−φ2)=sinθ+φ2cosθ−φ2−cosθ+φ2sinθ−φ2⇒sinθ+sinφ=2sinθ+φ2cosθ−φ2 Answered by Olaf last updated on 21/Dec/20 Manywaystoprovethat.Example:Letfϕ(θ)=2sinθ+ϕ2cosθ−ϕ2andgϕ(θ)=sinθ+sinϕ(ϕisaparameter)fϕ′(θ)=2[12cosθ+ϕ2cosθ−ϕ2−12sinθ+ϕ2cosθ+ϕ2]fϕ′(θ)=cos(θ+ϕ2+θ−ϕ2)=cosθ=gϕ′(θ)⇒fϕ(θ)=gϕ(θ)+CC=fϕ(ϕ)−gϕ(ϕ)=2sinϕ−2sinϕ=0fϕ(θ)=gϕ(θ) Answered by physicstutes last updated on 21/Dec/20 letsbeginwithsin(A+B)=sinAcosB+sinBcosA……(x)sin(A−B)=sinAcosB−sinBcosA…….(y)letA+B=θ…..(i)andA−B=∅…..(ii)(ii)+(i)⇒A=θ+∅2similarlyB=θ−∅2(x)+(y)⇒sin∅+sinθ=2sinAcosB⇒sinθ+sin∅=2sin(θ+∅2)cos(θ−∅2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-61027Next Next post: Question-192103 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.