Menu Close

Prove-that-2sin-2-cos-2-sin-sin-I-need-help-immediately-please-




Question Number 126562 by mey3nipaba last updated on 21/Dec/20
Prove that 2sin ((θ+φ)/2)cos ((θ−φ)/2)=sin θ+sin ∅  I need help immediately please
Provethat2sinθ+ϕ2cosθϕ2=sinθ+sinIneedhelpimmediatelyplease
Commented by mr W last updated on 21/Dec/20
θ=((θ+ϕ)/2)+((θ−ϕ)/2)  ϕ=((θ+ϕ)/2)−((θ−ϕ)/2)  sin θ=sin (((θ+ϕ)/2)+((θ−ϕ)/2))=sin ((θ+ϕ)/2) cos ((θ−ϕ)/2)+cos ((θ+ϕ)/2) sin ((θ−ϕ)/2)  sin ϕ=sin (((θ+ϕ)/2)−((θ−ϕ)/2))=sin ((θ+ϕ)/2) cos ((θ−ϕ)/2)−cos ((θ+ϕ)/2) sin ((θ−ϕ)/2)  ⇒sin θ+sin ϕ=2 sin ((θ+ϕ)/2) cos ((θ−ϕ)/2)
θ=θ+φ2+θφ2φ=θ+φ2θφ2sinθ=sin(θ+φ2+θφ2)=sinθ+φ2cosθφ2+cosθ+φ2sinθφ2sinφ=sin(θ+φ2θφ2)=sinθ+φ2cosθφ2cosθ+φ2sinθφ2sinθ+sinφ=2sinθ+φ2cosθφ2
Answered by Olaf last updated on 21/Dec/20
Many ways to prove that.  Example :  Let f_φ (θ) = 2sin((θ+φ)/2)cos((θ−φ)/2)  and g_φ (θ) = sinθ+sinφ  (φ is a parameter)  f_φ ′(θ) = 2[(1/2)cos((θ+φ)/2)cos((θ−φ)/2)−(1/2)sin((θ+φ)/2)cos((θ+φ)/2)]  f_φ ′(θ) = cos(((θ+φ)/2)+((θ−φ)/2)) = cosθ = g_φ ′(θ)  ⇒ f_φ (θ) = g_φ (θ)+C  C = f_φ (φ) −g_φ (φ) = 2sinφ−2sinφ = 0  f_φ (θ) = g_φ (θ)
Manywaystoprovethat.Example:Letfϕ(θ)=2sinθ+ϕ2cosθϕ2andgϕ(θ)=sinθ+sinϕ(ϕisaparameter)fϕ(θ)=2[12cosθ+ϕ2cosθϕ212sinθ+ϕ2cosθ+ϕ2]fϕ(θ)=cos(θ+ϕ2+θϕ2)=cosθ=gϕ(θ)fϕ(θ)=gϕ(θ)+CC=fϕ(ϕ)gϕ(ϕ)=2sinϕ2sinϕ=0fϕ(θ)=gϕ(θ)
Answered by physicstutes last updated on 21/Dec/20
lets begin with   sin (A + B) = sin A cos B + sin B cos A......(x)   sin (A−B) = sin A cos B − sin B cos A.......(y)  let A + B = θ .....(i)   and A−B = ∅.....(ii)   (ii) + (i) ⇒ A = ((θ + ∅)/2) similarly  B = ((θ−∅)/2)   (x) + (y) ⇒  sin ∅ + sin θ = 2 sin A cos B  ⇒  sin θ + sin ∅ = 2 sin (((θ + ∅)/2)) cos (((θ−∅)/2))
letsbeginwithsin(A+B)=sinAcosB+sinBcosA(x)sin(AB)=sinAcosBsinBcosA.(y)letA+B=θ..(i)andAB=..(ii)(ii)+(i)A=θ+2similarlyB=θ2(x)+(y)sin+sinθ=2sinAcosBsinθ+sin=2sin(θ+2)cos(θ2)

Leave a Reply

Your email address will not be published. Required fields are marked *