Question Number 126562 by mey3nipaba last updated on 21/Dec/20
$${Prove}\:{that}\:\mathrm{2sin}\:\frac{\theta+\phi}{\mathrm{2}}\mathrm{cos}\:\frac{\theta−\phi}{\mathrm{2}}=\mathrm{sin}\:\theta+\mathrm{sin}\:\emptyset \\ $$$${I}\:{need}\:{help}\:{immediately}\:{please} \\ $$
Commented by mr W last updated on 21/Dec/20
$$\theta=\frac{\theta+\varphi}{\mathrm{2}}+\frac{\theta−\varphi}{\mathrm{2}} \\ $$$$\varphi=\frac{\theta+\varphi}{\mathrm{2}}−\frac{\theta−\varphi}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta=\mathrm{sin}\:\left(\frac{\theta+\varphi}{\mathrm{2}}+\frac{\theta−\varphi}{\mathrm{2}}\right)=\mathrm{sin}\:\frac{\theta+\varphi}{\mathrm{2}}\:\mathrm{cos}\:\frac{\theta−\varphi}{\mathrm{2}}+\mathrm{cos}\:\frac{\theta+\varphi}{\mathrm{2}}\:\mathrm{sin}\:\frac{\theta−\varphi}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\varphi=\mathrm{sin}\:\left(\frac{\theta+\varphi}{\mathrm{2}}−\frac{\theta−\varphi}{\mathrm{2}}\right)=\mathrm{sin}\:\frac{\theta+\varphi}{\mathrm{2}}\:\mathrm{cos}\:\frac{\theta−\varphi}{\mathrm{2}}−\mathrm{cos}\:\frac{\theta+\varphi}{\mathrm{2}}\:\mathrm{sin}\:\frac{\theta−\varphi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta+\mathrm{sin}\:\varphi=\mathrm{2}\:\mathrm{sin}\:\frac{\theta+\varphi}{\mathrm{2}}\:\mathrm{cos}\:\frac{\theta−\varphi}{\mathrm{2}} \\ $$
Answered by Olaf last updated on 21/Dec/20
$$\mathrm{Many}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}. \\ $$$$\mathrm{Example}\:: \\ $$$$\mathrm{Let}\:{f}_{\phi} \left(\theta\right)\:=\:\mathrm{2sin}\frac{\theta+\phi}{\mathrm{2}}\mathrm{cos}\frac{\theta−\phi}{\mathrm{2}} \\ $$$$\mathrm{and}\:{g}_{\phi} \left(\theta\right)\:=\:\mathrm{sin}\theta+\mathrm{sin}\phi \\ $$$$\left(\phi\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}\right) \\ $$$${f}_{\phi} '\left(\theta\right)\:=\:\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\frac{\theta+\phi}{\mathrm{2}}\mathrm{cos}\frac{\theta−\phi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\frac{\theta+\phi}{\mathrm{2}}\mathrm{cos}\frac{\theta+\phi}{\mathrm{2}}\right] \\ $$$${f}_{\phi} '\left(\theta\right)\:=\:\mathrm{cos}\left(\frac{\theta+\phi}{\mathrm{2}}+\frac{\theta−\phi}{\mathrm{2}}\right)\:=\:\mathrm{cos}\theta\:=\:{g}_{\phi} '\left(\theta\right) \\ $$$$\Rightarrow\:{f}_{\phi} \left(\theta\right)\:=\:{g}_{\phi} \left(\theta\right)+\mathrm{C} \\ $$$$\mathrm{C}\:=\:{f}_{\phi} \left(\phi\right)\:−{g}_{\phi} \left(\phi\right)\:=\:\mathrm{2sin}\phi−\mathrm{2sin}\phi\:=\:\mathrm{0} \\ $$$${f}_{\phi} \left(\theta\right)\:=\:{g}_{\phi} \left(\theta\right) \\ $$
Answered by physicstutes last updated on 21/Dec/20
$$\mathrm{lets}\:\mathrm{begin}\:\mathrm{with} \\ $$$$\:\mathrm{sin}\:\left({A}\:+\:{B}\right)\:=\:\mathrm{sin}\:{A}\:\mathrm{cos}\:{B}\:+\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{A}……\left(\mathrm{x}\right) \\ $$$$\:\mathrm{sin}\:\left({A}−{B}\right)\:=\:\mathrm{sin}\:{A}\:\mathrm{cos}\:{B}\:−\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{A}…….\left(\mathrm{y}\right) \\ $$$$\mathrm{let}\:{A}\:+\:{B}\:=\:\theta\:…..\left({i}\right) \\ $$$$\:\mathrm{and}\:{A}−{B}\:=\:\emptyset…..\left({ii}\right) \\ $$$$\:\left({ii}\right)\:+\:\left({i}\right)\:\Rightarrow\:{A}\:=\:\frac{\theta\:+\:\emptyset}{\mathrm{2}}\:\mathrm{similarly}\:\:{B}\:=\:\frac{\theta−\emptyset}{\mathrm{2}} \\ $$$$\:\left(\mathrm{x}\right)\:+\:\left(\mathrm{y}\right)\:\Rightarrow\:\:\mathrm{sin}\:\emptyset\:+\:\mathrm{sin}\:\theta\:=\:\mathrm{2}\:\mathrm{sin}\:{A}\:\mathrm{cos}\:{B} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\theta\:+\:\mathrm{sin}\:\emptyset\:=\:\mathrm{2}\:\mathrm{sin}\:\left(\frac{\theta\:+\:\emptyset}{\mathrm{2}}\right)\:\mathrm{cos}\:\left(\frac{\theta−\emptyset}{\mathrm{2}}\right) \\ $$