Menu Close

Prove-that-3-e-1-3-k-1-n-0-1-n-k2-k-




Question Number 161745 by HongKing last updated on 21/Dec/21
Prove that:  3 (√e) = (1/3) Σ_(k=1) ^∞  [ Σ_(n=0) ^∞  (1/(n!)) ]k2^(-k)
Provethat:3e=13k=1[n=01n!]k2k
Commented by mr W last updated on 22/Dec/21
question seems false.
questionseemsfalse.
Answered by mr W last updated on 22/Dec/21
Σ_(k=1) ^∞ x^k =(x/(1−x)) for ∣x∣<1  Σ_(k=1) ^∞ kx^(k−1) =(1/(1−x))+(x/((1−x)^2 ))  Σ_(k=1) ^∞ kx^k =(x/(1−x))+(x^2 /((1−x)^2 ))  with x=(1/2)  ⇒Σ_(k=1) ^∞ k2^(−k) =((1/2)/(1−(1/2)))+((((1/2))^2 )/((1−(1/2))^2 ))=2  e^x =Σ_(n=0) ^∞ (x^n /(n!))  with x=1  ⇒Σ_(n=0) ^∞ (1/(n!))=e    (1/3) Σ_(k=1) ^∞  [ Σ_(n=0) ^∞  (1/(n!)) ]k2^(-k)   =(1/3) Σ_(k=1) ^∞  (e) k2^(-k)   =(e/3) Σ_(k=1) ^∞ k2^(-k)   =(e/3)×2  =((2e)/3)≠3(√e)
k=1xk=x1xforx∣<1k=1kxk1=11x+x(1x)2k=1kxk=x1x+x2(1x)2withx=12k=1k2k=12112+(12)2(112)2=2ex=n=0xnn!withx=1n=01n!=e13k=1[n=01n!]k2k=13k=1(e)k2k=e3k=1k2k=e3×2=2e33e
Commented by HongKing last updated on 22/Dec/21
SORRY my dear Sir , [ Σ_(n=0) ^k ...  no ∞ , k
SORRYmydearSir,[kn=0no,k

Leave a Reply

Your email address will not be published. Required fields are marked *