Menu Close

prove-that-4-8-please-help-




Question Number 153006 by GalaxyBills last updated on 04/Sep/21
prove that   4!!=8  please help
provethat4!!=8pleasehelp
Commented by talminator2856791 last updated on 04/Sep/21
    that is wrong.      n! = n∙(n−1)∙(n−2)∙.....∙2∙1      n!! = n!∙(n!−1)∙(n!−2)∙.....∙               (n!−n)∙(n!−n−1)∙.....∙               (n!−2n)∙(n!−2n−1)∙.....∙               .....................................               .               .               n∙(n−1)∙.....∙2∙1       4!! = 4!∙(4!−1)∙.....∙2∙1          =24∙23∙.....∙2∙1          = 620 448 401 733 239 439 360 000
thatiswrong.n!=n(n1)(n2)..21n!!=n!(n!1)(n!2)..(n!n)(n!n1)..(n!2n)(n!2n1).....n(n1)..214!!=4!(4!1)..21=2423..21=620448401733239439360000
Commented by mr W last updated on 04/Sep/21
n!!≠(n!)!  n!!=n×(n−2)×(n−4)×...×2 or 1
n!!(n!)!n!!=n×(n2)×(n4)××2or1
Commented by mr W last updated on 04/Sep/21
there is no why, just know it if you  didn′t already know.
thereisnowhy,justknowitifyoudidntalreadyknow.
Commented by talminator2856791 last updated on 04/Sep/21
 why?
why?
Commented by talminator2856791 last updated on 04/Sep/21
 then what is n!!!?
thenwhatisn!!!?
Commented by mr W last updated on 04/Sep/21
Commented by mr W last updated on 04/Sep/21
n!!!=n(n−3)(n−6)...
n!!!=n(n3)(n6)
Commented by Rasheed.Sindhi last updated on 04/Sep/21
If mod(n,3)=1:  n!!!=n(n−3)(n−6)...×7×4×1  If  mod(n,3)=2:  n!!!=n(n−3)(n−6)...×8×5×2  If mod(n,3)=0:  n!!!=n(n−3)(n−6)...×9×6×3
Ifmod(n,3)=1:n!!!=n(n3)(n6)×7×4×1Ifmod(n,3)=2:n!!!=n(n3)(n6)×8×5×2Ifmod(n,3)=0:n!!!=n(n3)(n6)×9×6×3
Answered by puissant last updated on 04/Sep/21
n!!=n(n−2)(n−4)....×4×2  4!!=4×2=8.
n!!=n(n2)(n4).×4×24!!=4×2=8.

Leave a Reply

Your email address will not be published. Required fields are marked *