Menu Close

prove-that-4tan-1-1-5-tan-1-1-239-pi-4-




Question Number 17068 by chux last updated on 30/Jun/17
prove that     4tan^(−1) ((1/5))−tan^(−1) ((1/(239))) =π/4
provethat4tan1(15)tan1(1239)=π/4
Answered by ajfour last updated on 30/Jun/17
z_1 =5+i  ;  z_2 =239+i  Arg(z_1 )=tan^(−1) (1/5)=α  Arg(z_2 )=tan^(−1) (1/239)=β  let z=(z_1 ^4 /z_2 ), then Arg(z)=4α−β  z=(z_1 ^4 /z_2 )=(((5+i)^4 )/(239+i))=(((24+10i)^2 (239−i))/(239^2 +1))    =(((476+480i)(239−i))/(239^2 +1))    =(((476×239+480)+i(480×239−476))/(239^2 +1))  z=((114244)/(239^2 +1)) (1+i)   z has argument θ=π/4   ⇒ 4α−β=(π/4)+kπ  or  4tan^(−1) ((1/5))−tan^(−1) ((1/(239)))=(π/4)+kπ.
z1=5+i;z2=239+iArg(z1)=tan1(1/5)=αArg(z2)=tan1(1/239)=βletz=z14z2,thenArg(z)=4αβz=z14z2=(5+i)4239+i=(24+10i)2(239i)2392+1=(476+480i)(239i)2392+1=(476×239+480)+i(480×239476)2392+1z=1142442392+1(1+i)zhasargumentθ=π/44αβ=π4+kπor4tan1(15)tan1(1239)=π4+kπ.
Commented by chux last updated on 01/Jul/17
mr Ajfour I really enjoy this   approach
mrAjfourIreallyenjoythisapproach
Answered by mrW1 last updated on 30/Jun/17
α=tan^(−1) (1/5)  β=tan^(−1) (1/(239))  tan 2α=((2tan α)/(1−tan^2  α))=((2×(1/5))/(1−((1/5))^2 ))=(5/(12))  tan 4α=((2tan 2α)/(1−tan^2  2α))=((2×(5/(12)))/(1−((5/(12)))^2 ))=((120)/(119))  tan (4α−β)=((tan 4α−tan β)/(1+tan 4α tan β))  =((((120)/(119))−(1/(239)))/(1+((120)/(119)) ×(1/(239))))  =((120×239−119)/(119×239+120))  =((28561)/(28561))  =1  ⇒4α−β=tan^(−1) 1=(π/4)+kπ with k∈Z  ⇒ 4 tan^(−1) ((1/5))−tan^(−1) ((1/(239))) =(π/4)+kπ
α=tan115β=tan11239tan2α=2tanα1tan2α=2×151(15)2=512tan4α=2tan2α1tan22α=2×5121(512)2=120119tan(4αβ)=tan4αtanβ1+tan4αtanβ=12011912391+120119×1239=120×239119119×239+120=2856128561=14αβ=tan11=π4+kπwithkZ4tan1(15)tan1(1239)=π4+kπ
Commented by chux last updated on 30/Jun/17
wow..... i really appreciate.
wow..ireallyappreciate.
Commented by Abbas-Nahi last updated on 01/Jul/17
very very Good.....with my best wishes
veryveryGood..withmybestwishes

Leave a Reply

Your email address will not be published. Required fields are marked *