Menu Close

Prove-that-5-divide-n-4n-2-1-6n-2-1-for-any-natural-number-n-




Question Number 158240 by HongKing last updated on 01/Nov/21
Prove that 5 divide  n(4n^2  + 1)(6n^2  + 1)  for any natural number n
Provethat5dividen(4n2+1)(6n2+1)foranynaturalnumbern
Answered by Rasheed.Sindhi last updated on 01/Nov/21
A(n)=n(4n^2  + 1)(6n^2  + 1)  n is possibly equal to one of the following:   5m,5m+1,5m+2,5m+3,5m+4  n=5m:  A(5m)=5m(4(5m)^2 +1)(6(5m)^2 +1)  Obviously  5 ∣ A(5m)   n=5m+1:  For n=5m+1  The factor 4n^2  + 1 of A(n)         = 4(5m+1)^2 +1=100m^2 +40m+5         =5(20m^2 +8m+1)  ∴ 5 ∣ A(5m+1)  n=5m+2:  For n=5m+2 the factor 6n^2 +1  =6(5m+2)^2 +1=150m^2 +120m+25  =5(30m^2 +24m+5)  ∴ 5∣A(5m+2)  n=5m+3:  The factor 6n^2 +1 of A(n)  =6(5m+3)^2 +1=150m^2 +180m+55  =5(30m^2 +36m+11)  ∴ 5 ∣ A(5m+3)  n=5m+4:   The factor 4n^2 +1 of A(n)  =4(5m+4)^2 +1=100m^2 +160+65  =5(20m^2 +32m+13)  ∴ 5 ∣ A(5m+4)    HENCE  5 ∣ A(n) in all possible cases
A(n)=n(4n2+1)(6n2+1)nispossiblyequaltooneofthefollowing:5m,5m+1,5m+2,5m+3,5m+4n=5m:A(5m)=5m(4(5m)2+1)(6(5m)2+1)Obviously5A(5m)n=5m+1:Forn=5m+1Thefactor4n2+1ofA(n)=4(5m+1)2+1=100m2+40m+5=5(20m2+8m+1)5A(5m+1)n=5m+2:Forn=5m+2thefactor6n2+1=6(5m+2)2+1=150m2+120m+25=5(30m2+24m+5)5A(5m+2)n=5m+3:Thefactor6n2+1ofA(n)=6(5m+3)2+1=150m2+180m+55=5(30m2+36m+11)5A(5m+3)n=5m+4:Thefactor4n2+1ofA(n)=4(5m+4)2+1=100m2+160+65=5(20m2+32m+13)5A(5m+4)HENCE5A(n)inallpossiblecases
Commented by HongKing last updated on 01/Nov/21
thank you so much dear Ser cool
thankyousomuchdearSercool

Leave a Reply

Your email address will not be published. Required fields are marked *