Menu Close

PROVE-THAT-6-8-x-2-x-




Question Number 170046 by Rasheed.Sindhi last updated on 14/May/22
PROVE THAT      6 ∣ (8^x −2^x )
$$\mathrm{PROVE}\:\mathrm{THAT} \\ $$$$\:\:\:\:\mathrm{6}\:\mid\:\left(\mathrm{8}^{{x}} −\mathrm{2}^{{x}} \right) \\ $$
Answered by JDamian last updated on 14/May/22
(8^x −2^x ) mod 6 =  =8^x mod 6 − 2^x mod 6=  =(8 mod 6)^x  − 2^x mod 6=  =2^x mod 6 − 2^x mod 6=  = 0
$$\left(\mathrm{8}^{{x}} −\mathrm{2}^{{x}} \right)\:\mathrm{mod}\:\mathrm{6}\:= \\ $$$$=\mathrm{8}^{{x}} \mathrm{mod}\:\mathrm{6}\:−\:\mathrm{2}^{{x}} \mathrm{mod}\:\mathrm{6}= \\ $$$$=\left(\mathrm{8}\:\mathrm{mod}\:\mathrm{6}\right)^{{x}} \:−\:\mathrm{2}^{{x}} \mathrm{mod}\:\mathrm{6}= \\ $$$$=\mathrm{2}^{{x}} \mathrm{mod}\:\mathrm{6}\:−\:\mathrm{2}^{{x}} \mathrm{mod}\:\mathrm{6}= \\ $$$$=\:\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 15/May/22
ThanX sir!
$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$
Answered by mr W last updated on 15/May/22
8^n =(2+6)^n =Σ_(k=0) ^n C_k ^n 6^(n−k) 2^k =Σ_(k=0) ^(n−1) C_k ^n 6^(n−k) 2^k +2^n   8^n −2^n =Σ_(k=0) ^(n−1) C_k ^n 6^(n−k) 2^k   ⇒6∣8^n −2^n
$$\mathrm{8}^{{n}} =\left(\mathrm{2}+\mathrm{6}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \mathrm{6}^{{n}−{k}} \mathrm{2}^{{k}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{C}_{{k}} ^{{n}} \mathrm{6}^{{n}−{k}} \mathrm{2}^{{k}} +\mathrm{2}^{{n}} \\ $$$$\mathrm{8}^{{n}} −\mathrm{2}^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{C}_{{k}} ^{{n}} \mathrm{6}^{{n}−{k}} \mathrm{2}^{{k}} \\ $$$$\Rightarrow\mathrm{6}\mid\mathrm{8}^{{n}} −\mathrm{2}^{{n}} \\ $$
Commented by Rasheed.Sindhi last updated on 15/May/22
ThanX sir!
$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *