Menu Close

Prove-that-7-n-1-divide-3-7-n-5-7-n-1-for-any-positive-integers-n-




Question Number 157967 by HongKing last updated on 30/Oct/21
Prove that  7^(n+1)   divide  3^7^n   + 5^7^n   - 1  for any positive integers  n
$$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{7}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\:\mathrm{divide}\:\:\mathrm{3}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:+\:\mathrm{5}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:-\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:\:\boldsymbol{\mathrm{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *