Menu Close

prove-that-9pi-8-9-4-sin-1-1-3-9-4-sin-1-2-2-3-




Question Number 44480 by peter frank last updated on 29/Sep/18
prove that  ((9π)/(8  ))−(9/4)sin^(−1) (1/3)=(9/4)sin^(−1) ((2(√2))/3)
provethat9π894sin113=94sin1223
Answered by math1967 last updated on 30/Sep/18
L.H.S=(9/4)((π/2)−sin^(−1) (1/3))  =(9/4)(cos^(−1) (1/3))       [∵sin^(−1) x+cos^(−1) x=(π/2)]  =(9/4)sin^(−1) ((√(1−((1/3))^2 )))  =(9/4)sin^(−1) ((2(√2))/3)=R.H.S proved
L.H.S=94(π2sin113)=94(cos113)[sin1x+cos1x=π2]=94sin1(1(13)2)=94sin1223=R.H.Sproved
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18
(9/4)(sin^(−1) ((2(√2) )/3)+sin^(−1) (1/3))  (9/4)(tan^(−1) ((2(√2))/1)+tan^(−1) (1/(2(√2))))  (9/4)(tan^(−1) ((2(√2) +(1/(2(√2))))/(1−2(√2) ×(1/(2(√2))))))  (9/4)tan^(−1) (∞)  (9/4)×(π/2)=((9π)/8)  so ((9π)/8)−(9/4)sin^(−1) (((2(√2))/3))=(9/4)sin^(−1) ((1/3))   proved
94(sin1223+sin113)94(tan1221+tan1122)94(tan122+122122×122)94tan1()94×π2=9π8so9π894sin1(223)=94sin1(13)proved
Commented by peter frank last updated on 29/Sep/18
sir    ((9π)/8) ≠ sin^(−1) ((2(√2))/3)
sir9π8sin1223
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18
look the method of solve   given to prove a−b=c  i have prove a=b+c  if a=b+c   that means a−b=c  so before comment pls see the method of solve
lookthemethodofsolvegiventoproveab=cihaveprovea=b+cifa=b+cthatmeansab=csobeforecommentplsseethemethodofsolve
Commented by peter frank last updated on 29/Sep/18
okay sir thank you now i understood
okaysirthankyounowiunderstood
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18
or method  to prove  ((9π)/8)−(9/4)sin^(−1) (((2(√2))/3))=(9/4)sin^(−1) ((1/3))  let k=(9/4)((π/2)−sin^(−1) (((2(√2))/3))  ((4k)/9)=(π/2)−sin^(−1) (((2(√2))/3))  sin(((4k)/9))=sin{(π/2)−sin^(−1) (((2(√2))/3))}  sin(((4k)/9))=cos({sin^(−1) (((2(√2))/3))}  sin(((4k)/9))=(1/3)  [reason  sinα=((2(√2))/3)   so cosα=(1/3)]  ((4k)/9)=sin^(−1) ((1/3))  k=(9/4)sin^(−1) ((1/3))   hence prlved...
ormethodtoprove9π894sin1(223)=94sin1(13)letk=94(π2sin1(223)4k9=π2sin1(223)sin(4k9)=sin{π2sin1(223)}sin(4k9)=cos({sin1(223)}sin(4k9)=13[reasonsinα=223socosα=13]4k9=sin1(13)k=94sin1(13)henceprlved
Commented by peter frank last updated on 29/Sep/18
very nice
verynice

Leave a Reply

Your email address will not be published. Required fields are marked *