Menu Close

Prove-that-a-2-b-2-c-2-6-3-a-b-c-a-b-c-R-




Question Number 126175 by naka3546 last updated on 17/Dec/20
Prove  that        a^2  + b^2  + c^2  + 6 ≥ 3(a + b + c)  a, b, c ∈ R^+
Provethata2+b2+c2+63(a+b+c)a,b,cR+
Commented by PRITHWISH SEN 2 last updated on 18/Dec/20
(a −2)^2  ≥−(a−2)  equality holds for a=1  ⇒a^2 +2≥3a  similariy   b^2 +2≥3b   c^2 +2≥3c  adding  a^2 +b^2 +c^2 +6 ≥3(a+b+c)
(a2)2(a2)equalityholdsfora=1a2+23asimilariyb2+23bc2+23caddinga2+b2+c2+63(a+b+c)

Leave a Reply

Your email address will not be published. Required fields are marked *