Menu Close

Prove-that-a-2-b-2-c-2-ab-bc-ca-a-b-c-R-




Question Number 32768 by Rasheed.Sindhi last updated on 01/Apr/18
Prove that a^2 +b^2 +c^2 ≥ab+bc+ca  ∀ a,b,c∈R
Provethata2+b2+c2ab+bc+caa,b,cR
Answered by mrW2 last updated on 02/Apr/18
a^2 +b^2 −2ab=(a−b)^2 ≥0  a^2 +b^2 ≥2ab  b^2 +c^2 ≥2bc  c^2 +a^2 ≥2ca  Σ:  2(a^2 +b^2 +c^2 )≥2(ab+bc+ca)  a^2 +b^2 +c^2 ≥ab+bc+ca
a2+b22ab=(ab)20a2+b22abb2+c22bcc2+a22caΣ:2(a2+b2+c2)2(ab+bc+ca)a2+b2+c2ab+bc+ca
Commented by Joel578 last updated on 02/Apr/18
In 3rd line, did you mean   c^2  + a^2  ≥ 2ca  ?
In3rdline,didyoumeanc2+a22ca?
Commented by Rasheed.Sindhi last updated on 02/Apr/18
Th∀nks Sir!
ThnksSir!
Commented by mrW2 last updated on 02/Apr/18
yes. thanks!
yes.thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *