Menu Close

Prove-that-a-4-b-4-c-4-abc-a-b-c-




Question Number 18369 by Tinkutara last updated on 19/Jul/17
Prove that a^4  + b^4  + c^4  ≥ abc(a + b + c)
Provethata4+b4+c4abc(a+b+c)
Answered by mrW1 last updated on 19/Jul/17
a^4 +b^4 ≥2a^2 b^2   b^4 +c^4 ≥2b^2 c^2   c^4 +a^4 ≥2c^2 a^2   a^4 +b^4 +c^4 ≥a^2 b^2 +b^2 c^2 +c^2 a^2   a^4 +b^4 +c^4 ≥abc(((ab)/c)+((bc)/a)+((ca)/b))  a^4 +b^4 +c^4 ≥(1/2)abc(((ab)/c)+((bc)/a)+((ab)/c)+((ca)/b)+((bc)/a)+((ca)/b))  a^4 +b^4 +c^4 ≥(1/2)abc(2b+2a+2c)  a^4 +b^4 +c^4 ≥abc(a+b+c)
a4+b42a2b2b4+c42b2c2c4+a42c2a2a4+b4+c4a2b2+b2c2+c2a2a4+b4+c4abc(abc+bca+cab)a4+b4+c412abc(abc+bca+abc+cab+bca+cab)a4+b4+c412abc(2b+2a+2c)a4+b4+c4abc(a+b+c)
Commented by Tinkutara last updated on 19/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *