Question Number 192129 by universe last updated on 08/May/23
$$\:{prove}\:{that} \\ $$$$\:\mid{a}+\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\mid\:+\:\mid{a}\:−\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\mid\:=\:\mid{a}+{b}\mid\:+\mid{a}−{b}\mid \\ $$$${a},{b}\:\in\:\mathbb{C} \\ $$
Answered by AST last updated on 08/May/23
$${Squaring}\:{both}\:{sides} \\ $$$$\left(\mid{x}\mid^{\mathrm{2}} ={x}\overset{−} {{x}};\mid{xy}\mid=\mid{x}\mid\mid{y}\mid;\overset{\_\_\_\_\_} {{x}+{y}}=\overset{−} {{x}}+\overset{−} {{y}}\right) \\ $$$${LHS}^{\mathrm{2}} = \\ $$$$\left({a}+\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\left(\overset{−} {{a}}+\overset{} {\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)+\left({a}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\left(\overset{−} {{a}}−\overset{} {\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$$+\mathrm{2}\mid\left({a}+\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\left({a}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)={b}^{\mathrm{2}} \mid \\ $$$$=\mathrm{2}\mid{a}\mid^{\mathrm{2}} +\mathrm{2}\mid{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \mid+\mathrm{2}\mid{b}\mid^{\mathrm{2}} \\ $$$${RHS}^{\mathrm{2}} =\left({a}+{b}\right)\left(\overset{−} {{a}}+\overset{−} {{b}}\right)+\left({a}−{b}\right)\left(\overset{−} {{a}}−\overset{−} {{b}}\right)+\mathrm{2}\mid{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \mid \\ $$$$=\mathrm{2}\mid{a}\mid^{\mathrm{2}} +\mathrm{2}\mid{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \mid+\mathrm{2}\mid{b}\mid^{\mathrm{2}} \\ $$$${Since}\:{LHS}\:{and}\:{RHS}\:{were}\:{both}\:{positive}\:{before} \\ $$$${squaring}\:{both}\:{sides} \\ $$$${LHS}^{\mathrm{2}} ={RHS}^{\mathrm{2}} \Rightarrow{LHS}={RHS}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Box \\ $$
Commented by York12 last updated on 08/May/23
$${sir}\:{I}\:{wanna}\:{ask}\:{you}\left[{several}\:{quesions}\:,\right. \\ $$$$\:{I}\:{am}\:{a}\:{high}\:{school}\:{student}\: \\ $$$${and}\:{I}\:{wanna}\:{ask}\:{about}\:{books}\:{recommendationd} \\ $$$${so}\:{sir}\:{that}\:{is}\:{my}\:{telegram}\:\::\:{bengubler} \\ $$
Commented by AST last updated on 09/May/23
$${I}\:{don}'{t}\:{use}\:{telegram}. \\ $$
Commented by York12 last updated on 09/May/23
$${so}\:{sir}\:{how}\:{can}\:{I}\:{reach}\:{you}\:{out} \\ $$
Answered by universe last updated on 09/May/23