Menu Close

prove-that-a-a-2-b-2-a-a-2-b-2-a-b-a-b-a-b-C-




Question Number 192129 by universe last updated on 08/May/23
 prove that   ∣a+(√(a^2 −b^2 ))∣ + ∣a − (√(a^2 −b^2 ))∣ = ∣a+b∣ +∣a−b∣  a,b ∈ C
provethata+a2b2+aa2b2=a+b+aba,bC
Answered by AST last updated on 08/May/23
Squaring both sides  (∣x∣^2 =xx^− ;∣xy∣=∣x∣∣y∣;x+y^(_____) =x^− +y^− )  LHS^2 =  (a+(√(a^2 −b^2 )))(a^− +(√(a^2 −b^2 ))^() )+(a−(√(a^2 −b^2 )))(a^− −(√(a^2 −b^2 ))^() )  +2∣(a+(√(a^2 −b^2 )))(a−(√(a^2 −b^2 )))=b^2 ∣  =2∣a∣^2 +2∣a^2 −b^2 ∣+2∣b∣^2   RHS^2 =(a+b)(a^− +b^− )+(a−b)(a^− −b^− )+2∣a^2 −b^2 ∣  =2∣a∣^2 +2∣a^2 −b^2 ∣+2∣b∣^2   Since LHS and RHS were both positive before  squaring both sides  LHS^2 =RHS^2 ⇒LHS=RHS                                     □
Squaringbothsides(x2=xx;xy∣=∣x∣∣y;x+y_____=x+y)LHS2=(a+a2b2)(a+a2b2)+(aa2b2)(aa2b2)+2(a+a2b2)(aa2b2)=b2=2a2+2a2b2+2b2RHS2=(a+b)(a+b)+(ab)(ab)+2a2b2=2a2+2a2b2+2b2SinceLHSandRHSwerebothpositivebeforesquaringbothsidesLHS2=RHS2LHS=RHS◻
Commented by York12 last updated on 08/May/23
sir I wanna ask you[several quesions ,   I am a high school student   and I wanna ask about books recommendationd  so sir that is my telegram  : bengubler
sirIwannaaskyou[severalquesions,IamahighschoolstudentandIwannaaskaboutbooksrecommendationdsosirthatismytelegram:bengubler
Commented by AST last updated on 09/May/23
I don′t use telegram.
Idontusetelegram.
Commented by York12 last updated on 09/May/23
so sir how can I reach you out
sosirhowcanIreachyouout
Answered by universe last updated on 09/May/23
(1/2){∣a+b+a−b+2(√((a+b)(a−b)))∣+∣a+b+a−b−2(√((a+b)(a−b)))∣}  let a+b = x  and a−b = y  (1/2){∣((√x))^2 +((√y))^2 +2(√(xy))∣+∣((√x))^2 +((√y))^2 −2(√(xy))∣}  (1/2){∣(√x)+(√y) ∣^2 +∣(√x)− (√y) ∣^2 }  let (√x)  =  u  and  (√y)  =  v  (1/2){(u+v)(u^� +v^� )+(u−v)(u^� −v^� )}  (1/2){uu^� +uv^� +vu^� +vv^� +uu^� −uv^� −vu^� +vv^� }  uu^� +vv^�  ⇒∣u^2 ∣+∣v^2 ∣ ⇒∣((√x))^2 ∣+∣((√y))^2 ∣    ∣x∣+∣y∣ ⇒ ∣a+b∣ + ∣a−b∣
12{a+b+ab+2(a+b)(ab)+a+b+ab2(a+b)(ab)}leta+b=xandab=y12{(x)2+(y)2+2xy+(x)2+(y)22xy}12{x+y2+xy2}letx=uandy=v12{(u+v)(u¯+v¯)+(uv)(u¯v¯)}12{uu¯+uv¯+vu¯+vv¯+uu¯uv¯vu¯+vv¯}uu¯+vv¯⇒∣u2+v2⇒∣(x)2+(y)2x+ya+b+ab

Leave a Reply

Your email address will not be published. Required fields are marked *