Menu Close

Prove-that-A-A-A-Help-




Question Number 186077 by Mastermind last updated on 31/Jan/23
Prove that   ▽•(∅A^− )=(▽∅)•A+∅(▽•A^− ).      Help!
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\bigtriangledown\bullet\left(\varnothing\overset{−} {\mathrm{A}}\right)=\left(\bigtriangledown\varnothing\right)\bullet\mathrm{A}+\varnothing\left(\bigtriangledown\bullet\overset{−} {\mathrm{A}}\right). \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Answered by aleks041103 last updated on 30/Apr/23
Interesting choice of notation...  what you want is  div(av^(→) )=grad(a).v^(→)  + a div(v^(→) )    First way:  div(av)=((∂(av_x ))/∂x)+((∂(av_y ))/∂y)+((∂(av_z ))/∂z)=  =v_x (∂a/∂x)+v_y (∂a/∂y)+v_z (∂a/∂z)+a((∂v_x /∂x)+(∂v_y /∂y)+(∂v_z /∂z))=  = ((v_x ),(v_y ),(v_z ) )  . (((∂a/∂x)),((∂a/∂y)),((∂a/∂z)) )  + a div(v)=  =v.grad(a)+a div(v)=div(av)    Second way: using einstein notation  div(av)=∂_i (av^i )=v^i (∂_i a)+a(∂_i v^i )=  =v.grad(a)+a div(v)=div(av)    Note:  I dropped the  ^→  on top of the v for easy  typesetting.
$${Interesting}\:{choice}\:{of}\:{notation}… \\ $$$${what}\:{you}\:{want}\:{is} \\ $$$${div}\left({a}\overset{\rightarrow} {{v}}\right)={grad}\left({a}\right).\overset{\rightarrow} {{v}}\:+\:{a}\:{div}\left(\overset{\rightarrow} {{v}}\right) \\ $$$$ \\ $$$${First}\:{way}: \\ $$$${div}\left({av}\right)=\frac{\partial\left({av}_{{x}} \right)}{\partial{x}}+\frac{\partial\left({av}_{{y}} \right)}{\partial{y}}+\frac{\partial\left({av}_{{z}} \right)}{\partial{z}}= \\ $$$$={v}_{{x}} \frac{\partial{a}}{\partial{x}}+{v}_{{y}} \frac{\partial{a}}{\partial{y}}+{v}_{{z}} \frac{\partial{a}}{\partial{z}}+{a}\left(\frac{\partial{v}_{{x}} }{\partial{x}}+\frac{\partial{v}_{{y}} }{\partial{y}}+\frac{\partial{v}_{{z}} }{\partial{z}}\right)= \\ $$$$=\begin{pmatrix}{{v}_{{x}} }\\{{v}_{{y}} }\\{{v}_{{z}} }\end{pmatrix}\:\:.\begin{pmatrix}{\partial{a}/\partial{x}}\\{\partial{a}/\partial{y}}\\{\partial{a}/\partial{z}}\end{pmatrix}\:\:+\:{a}\:{div}\left({v}\right)= \\ $$$$={v}.{grad}\left({a}\right)+{a}\:{div}\left({v}\right)={div}\left({av}\right) \\ $$$$ \\ $$$${Second}\:{way}:\:{using}\:{einstein}\:{notation} \\ $$$${div}\left({av}\right)=\partial_{{i}} \left({av}^{{i}} \right)={v}^{{i}} \left(\partial_{{i}} {a}\right)+{a}\left(\partial_{{i}} {v}^{{i}} \right)= \\ $$$$={v}.{grad}\left({a}\right)+{a}\:{div}\left({v}\right)={div}\left({av}\right) \\ $$$$ \\ $$$${Note}: \\ $$$${I}\:{dropped}\:{the}\:\overset{\rightarrow} {\:}\:{on}\:{top}\:{of}\:{the}\:{v}\:{for}\:{easy} \\ $$$${typesetting}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *