Menu Close

Prove-that-A-A-A-Help-




Question Number 186077 by Mastermind last updated on 31/Jan/23
Prove that   ▽•(∅A^− )=(▽∅)•A+∅(▽•A^− ).      Help!
Provethat(A)=()A+(A).Help!
Answered by aleks041103 last updated on 30/Apr/23
Interesting choice of notation...  what you want is  div(av^(→) )=grad(a).v^(→)  + a div(v^(→) )    First way:  div(av)=((∂(av_x ))/∂x)+((∂(av_y ))/∂y)+((∂(av_z ))/∂z)=  =v_x (∂a/∂x)+v_y (∂a/∂y)+v_z (∂a/∂z)+a((∂v_x /∂x)+(∂v_y /∂y)+(∂v_z /∂z))=  = ((v_x ),(v_y ),(v_z ) )  . (((∂a/∂x)),((∂a/∂y)),((∂a/∂z)) )  + a div(v)=  =v.grad(a)+a div(v)=div(av)    Second way: using einstein notation  div(av)=∂_i (av^i )=v^i (∂_i a)+a(∂_i v^i )=  =v.grad(a)+a div(v)=div(av)    Note:  I dropped the  ^→  on top of the v for easy  typesetting.
Interestingchoiceofnotationwhatyouwantisdiv(av)=grad(a).v+adiv(v)Firstway:div(av)=(avx)x+(avy)y+(avz)z==vxax+vyay+vzaz+a(vxx+vyy+vzz)==(vxvyvz).(a/xa/ya/z)+adiv(v)==v.grad(a)+adiv(v)=div(av)Secondway:usingeinsteinnotationdiv(av)=i(avi)=vi(ia)+a(ivi)==v.grad(a)+adiv(v)=div(av)Note:Idroppedtheontopofthevforeasytypesetting.

Leave a Reply

Your email address will not be published. Required fields are marked *