Menu Close

prove-that-a-b-a-b-a-b-a-b-4a-3b-2-b-2-




Question Number 191947 by universe last updated on 04/May/23
prove that  (√(a+b(√(a−b(√(a+b(√(a−b(√(...))))))))))  =  (((√(4a−3b^2 ))+b)/2)
provethata+baba+bab=4a3b2+b2
Answered by ajfour last updated on 05/May/23
Let s=(√(a+b(√(a−bs))))=((b+(√(4a−3b^2 )))/2)  ⇒ s^2 =a+b(√(a−bs))  (s^2 −a)^2 =b^2 (a−bs)   ...(i)  &    (2s−b)^2 =4a−3b^2       ⇒  4s^2 +b^2 −4bs=4a−3b^2   or       (s^2 −a)^2 =b^2 (s−b)^2   ..(ii)  comparing (i) & (ii)  ⇒  (s−b)^2 =a−bs  (s−b)^2 +b(s−b)−(a−b^2 )=0  s−b=((−b±(√(4a−3b^2 )))/2)  s=((b±(√(4a−3b^2 )))/2)
Lets=a+babs=b+4a3b22s2=a+babs(s2a)2=b2(abs)(i)&(2sb)2=4a3b24s2+b24bs=4a3b2or(s2a)2=b2(sb)2..(ii)comparing(i)&(ii)(sb)2=abs(sb)2+b(sb)(ab2)=0sb=b±4a3b22s=b±4a3b22
Commented by mr W last updated on 04/May/23
������
Commented by mehdee42 last updated on 05/May/23
dear friend,what is the reason for using equation (2s−b)^2 =4a−3b^2   ?
dearfriend,whatisthereasonforusingequation(2sb)2=4a3b2?
Answered by universe last updated on 05/May/23
   (√(a+b(√(a−b(√(a+b(√(a−b(√(...)))))))))) = x (let)  ...(1)     and     (√(a−b(√(a+b(√(a−b(√(a+b(√(...))))))))))  =  y(let) ...(2)     by (1)      (√(a+by))  =  x  ⇒ a+by = x^2   ....(3)    now by (2)     (√(a−bx))  =  y  ⇒ a−bx  = y^2     ....(4)    eq^n (3)−eq^n (4)     b(x+y)  =   (x−y)(x+y) ⇒ x−y = b     y  = x−b     by (3)     a+bx−b^2  = x^2   ⇒ x^2 −bx +b^2 −a = 0     x   =  ((b+(√(b^2 −4(b^2 −a))))/2)     x =  ((b+(√(4a−3b^2 )))/2)
a+baba+bab=x(let)(1)andaba+baba+b=y(let)(2)by(1)a+by=xa+by=x2.(3)nowby(2)abx=yabx=y2.(4)eqn(3)eqn(4)b(x+y)=(xy)(x+y)xy=by=xbby(3)a+bxb2=x2x2bx+b2a=0x=b+b24(b2a)2x=b+4a3b22
Commented by mehdee42 last updated on 05/May/23
a beautiful solution
abeautifulsolution

Leave a Reply

Your email address will not be published. Required fields are marked *