Menu Close

Prove-that-a-b-b-c-c-a-8-1-3-ab-bc-ca-3-for-a-b-c-gt-0-




Question Number 120215 by benjo_mathlover last updated on 30/Oct/20
Prove that (((((a+b)(b+c)(c+a))/8) ))^(1/3)  ≥ (√((ab+bc+ca)/3))  for a,b,c > 0
$${Prove}\:{that}\:\sqrt[{\mathrm{3}}]{\frac{\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)}{\mathrm{8}}\:}\:\geqslant\:\sqrt{\frac{{ab}+{bc}+{ca}}{\mathrm{3}}} \\ $$$${for}\:{a},{b},{c}\:>\:\mathrm{0} \\ $$
Answered by TANMAY PANACEA last updated on 30/Oct/20
((a+b)/2)≥(√(ab))   ((b+c)/2)≥(√(bc))  ((c+a)/2)≥(√(ac))  multiply them  (((a+b)(b+c)(c+a))/8)≥(√(a^2 b^2 c^ ))  (((a+b)(b+c)(c+a))/8)≥abc  [(((a+b)(b+c)(c+a))/8)]^(1/3) ≥(abc)^(1/3)   now(√((ab+bc+ac)/3)) ≥(√((ab×bc×ac)^(1/3) ))  (√((ab+bc+ac)/3)) ≥(a^2 b^2 c^2 )^(1/6)   (√((ab+bc+ac)/3)) ≥(abc)^(1/3)
$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\: \\ $$$$\frac{{b}+{c}}{\mathrm{2}}\geqslant\sqrt{{bc}} \\ $$$$\frac{{c}+{a}}{\mathrm{2}}\geqslant\sqrt{{ac}} \\ $$$${multiply}\:{them} \\ $$$$\frac{\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)}{\mathrm{8}}\geqslant\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{} } \\ $$$$\frac{\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)}{\mathrm{8}}\geqslant{abc} \\ $$$$\left[\frac{\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)}{\mathrm{8}}\right]^{\frac{\mathrm{1}}{\mathrm{3}}} \geqslant\left({abc}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${now}\sqrt{\frac{{ab}+{bc}+{ac}}{\mathrm{3}}}\:\geqslant\sqrt{\left({ab}×{bc}×{ac}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$\sqrt{\frac{{ab}+{bc}+{ac}}{\mathrm{3}}}\:\geqslant\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$$\sqrt{\frac{{ab}+{bc}+{ac}}{\mathrm{3}}}\:\geqslant\left({abc}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *