Menu Close

prove-that-a-b-sin-x-b-a-sin-x-2-dx-cos-x-b-a-sin-x-




Question Number 156761 by gsk2684 last updated on 15/Oct/21
prove that  ∫((a + b sin x)/((b + a sin x)^2 ))dx=((−cos x)/(b + a sin x))
provethata+bsinx(b+asinx)2dx=cosxb+asinx
Answered by cortano last updated on 15/Oct/21
 (d/dx)∫((a+bsin x)/((b+asin x)^2 )) dx=(d/dx)(((−cos x)/(b+asin x)))   ((a+bsin x)/((b+asin x)^2 ))=((sin x(b+asin x)+cos x(acos x))/((b+asin x)^2 ))                       =((bsin x+asin^2 x+acos^2 x)/((b+asin x)^2 ))           =((a+bsin x)/((b+asin x)^2 )) .
ddxa+bsinx(b+asinx)2dx=ddx(cosxb+asinx)a+bsinx(b+asinx)2=sinx(b+asinx)+cosx(acosx)(b+asinx)2=bsinx+asin2x+acos2x(b+asinx)2=a+bsinx(b+asinx)2.
Commented by gsk2684 last updated on 15/Oct/21
result is verified. good
resultisverified.good
Answered by puissant last updated on 15/Oct/21
D = ∫((a+bsinx)/((b+asinx)^2 ))dx = ∫(((a+bsinx))/((b+asinx)^2 ))•((sec^2 x)/(sec^2 x))dx  =∫((a sec^2 x+b tanx secx)/((b secx+a tanx)^2 ))dx  u=b secx+a tanx → du=(b secx tanx+a sec^2 x)dx  ⇒ D = ∫(dt/t^2 ) = ((−1)/t)+C..  ⇒ D = ((−1)/(b secx+a tanx))+C  ⇒ D = ((−1)/((b/(cosx))+((a sinx)/(cosx))))+C = ((−cosx)/(b+asinx)) +C                     ∴∵  D = ((−cosx)/(b+a sinx))+C..
D=a+bsinx(b+asinx)2dx=(a+bsinx)(b+asinx)2sec2xsec2xdx=asec2x+btanxsecx(bsecx+atanx)2dxu=bsecx+atanxdu=(bsecxtanx+asec2x)dxD=dtt2=1t+C..D=1bsecx+atanx+CD=1bcosx+asinxcosx+C=cosxb+asinx+C∴∵D=cosxb+asinx+C..
Commented by gsk2684 last updated on 15/Oct/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *