Menu Close

prove-that-a-cosh-1-x-ln-x-x-2-1-b-tanh-1-x-1-2-ln-x-1-x-1-x-lt-1-




Question Number 178577 by Spillover last updated on 18/Oct/22
prove that  (a)cosh^(−1) x=±ln (x+(√(x^2 −1)))  (b)tanh^(−1) x=(1/2)ln (((x+1)/(x−1))),∣x∣<1
provethat(a)cosh1x=±ln(x+x21)(b)tanh1x=12ln(x+1x1),x∣<1
Answered by depressiveshrek last updated on 18/Oct/22
y=arccoshx  coshy=x  ((e^y +e^(−y) )/2)=x  e^y +(1/e^y )=2x  (e^y )^2 −2xe^y +1=0  e^y =((2x+(√(4x^2 −4)))/2) ^∗   e^y =((2x+2(√(x^2 −1)))/2)  e^y =x+(√(x^2 −1))  y=ln(x+(√(x^2 −1)))  arccoshx=ln(x+(√(x^2 −1)))     y=arctanhx  tanhy=x  ((e^y −e^(−y) )/(e^y +e^(−y) ))=x  e^y −(1/e^y )=xe^y +(x/e^y )  (e^y )^2 −x(e^y )^2 =x+1  (e^y )^2 (1−x)=x+1  (e^y )^2 =((x+1)/(1−x))  e^y =(√((x+1)/(1−x)))  ^∗   y=ln(√((x+1)/(1−x)))  arctanhx=(1/2)ln∣((x+1)/(1−x))∣
y=arccoshxcoshy=xey+ey2=xey+1ey=2x(ey)22xey+1=0ey=2x+4x242ey=2x+2x212ey=x+x21y=ln(x+x21)arccoshx=ln(x+x21)y=arctanhxtanhy=xeyeyey+ey=xey1ey=xey+xey(ey)2x(ey)2=x+1(ey)2(1x)=x+1(ey)2=x+11xey=x+11xy=lnx+11xarctanhx=12lnx+11x
Commented by Spillover last updated on 18/Oct/22
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *