Menu Close

prove-that-a-n-n-1-defined-by-a-n-1-2-1-6-1-n-n-1-is-cauchy-sequence-




Question Number 148609 by learner001 last updated on 29/Jul/21
prove that (a_n )_(n≥1 ) defined by a_n =(1/2)+(1/6)+...+(1/(n(n+1))) is   cauchy sequence.
$$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{a}_{\mathrm{n}} \right)_{\mathrm{n}\geqslant\mathrm{1}\:} \mathrm{defined}\:\mathrm{by}\:\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+…+\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{is}\: \\ $$$$\mathrm{cauchy}\:\mathrm{sequence}. \\ $$
Commented by learner001 last updated on 29/Jul/21
This is what i tried.  let ε>0 be given i need an n^∗  such that p∈N if ∀ n≥n^∗  then  ∣a_(n+p) −a_n ∣<ε.  ∣a_(n+p) −a_n ∣=∣((1/(n+1))−(1/(n+2)))+((1/(n+2))−(1/(n+3)))+...+((1/(n+p))−(1/(n+p+1)))∣  =∣(1/(n+1))−(1/(n+p+1))∣≤∣(1/(n+1))∣+∣(1/(n+p+1))∣<(1/n)+(1/(n+p))<(1/n)<ε  if n^∗ ≥(1/ε) then ∣a_(n+p) −a_n ∣<ε ∀ n≥n^∗ .
$$\mathrm{This}\:\mathrm{is}\:\mathrm{what}\:\mathrm{i}\:\mathrm{tried}. \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{be}\:\mathrm{given}\:\mathrm{i}\:\mathrm{need}\:\mathrm{an}\:\mathrm{n}^{\ast} \:\mathrm{such}\:\mathrm{that}\:\mathrm{p}\in\mathbb{N}\:\mathrm{if}\:\forall\:\mathrm{n}\geqslant\mathrm{n}^{\ast} \:\mathrm{then} \\ $$$$\mid\mathrm{a}_{\mathrm{n}+\mathrm{p}} −\mathrm{a}_{\mathrm{n}} \mid<\epsilon. \\ $$$$\mid\mathrm{a}_{\mathrm{n}+\mathrm{p}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\right)+…+\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{p}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{p}+\mathrm{1}}\right)\mid \\ $$$$=\mid\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{p}+\mathrm{1}}\mid\leqslant\mid\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\mid+\mid\frac{\mathrm{1}}{\mathrm{n}+\mathrm{p}+\mathrm{1}}\mid<\frac{\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{p}}<\frac{\mathrm{1}}{\mathrm{n}}<\epsilon \\ $$$$\mathrm{if}\:\mathrm{n}^{\ast} \geqslant\frac{\mathrm{1}}{\epsilon}\:\mathrm{then}\:\mid\mathrm{a}_{\mathrm{n}+\mathrm{p}} −\mathrm{a}_{\mathrm{n}} \mid<\epsilon\:\forall\:\mathrm{n}\geqslant\mathrm{n}^{\ast} . \\ $$
Commented by learner001 last updated on 29/Jul/21
is this correct?

Leave a Reply

Your email address will not be published. Required fields are marked *