Menu Close

Prove-that-a-series-inspired-Knopp-Konrad-e-k-0-sin-kpi-4-k-2-k-pi-k-




Question Number 161964 by HongKing last updated on 24/Dec/21
Prove that: (a series inspired Knopp Konrad)  (√e^𝛑 )  = Σ_(k=0) ^∞  ((sin(((kπ)/4)))/((k!) (√2^k )))  π^k
Provethat:(aseriesinspiredKnoppKonrad)eπ=k=0sin(kπ4)(k!)2kπk
Answered by mindispower last updated on 25/Dec/21
sin(a)=Ime^(ia)   Σ_(k≥0) ((sin(((kπ)/4)))/(k!.(√2^k ))).π^k =ImΣ_(k≥0) (((πe^(i(π/4)) )^k )/(k!((√2))^k ))  =Ime^((π/( (√2))) e^(i(π/4)) ) =Im e^((π/2)(1+i))   =e^(π/2) =(√e^π )
sin(a)=Imeiak0sin(kπ4)k!.2k.πk=Imk0(πeiπ4)kk!(2)k=Imeπ2eiπ4=Imeπ2(1+i)=eπ2=eπ
Commented by HongKing last updated on 25/Dec/21
cool my dear Sir thank you so much
coolmydearSirthankyousomuch
Answered by Lordose last updated on 25/Dec/21
A = Σ_(k=0) ^∞ ((sin(((k𝛑)/4)))/(k!(√2^k )))𝛑^k  = ImΣ_(k=0) ^∞ (e^((i𝛑k)/4) /(k!(√2^k )))𝛑^k   A = ImΣ_(k=0) ^∞ (((((𝛑e^((i𝛑)/4) )/( (√2))))^k )/(k!)) = Σ_(k=0) ^∞ ((((𝛑/2))^k )/(k!))  e^x  = Σ_(k=0) ^∞ (x^k /(k!)), Im(e^((i𝛑)/4) ) = (1/( (√2)))  A = e^(𝛑/2)  = (√e^𝛑 )
A=k=0sin(kπ4)k!2kπk=Imk=0eiπk4k!2kπkA=Imk=0(πeiπ42)kk!=k=0(π2)kk!ex=k=0xkk!,Im(eiπ4)=12A=eπ2=eπ

Leave a Reply

Your email address will not be published. Required fields are marked *