Menu Close

Prove-that-abc-1-a-1-b-1-c-1-for-0-a-b-c-1-




Question Number 63247 by Joel122 last updated on 01/Jul/19
Prove that  (√(abc)) + (√((1−a)(1−b)(1−c))) ≤ 1  for 0 ≤ a,b,c ≤ 1
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{{abc}}\:+\:\sqrt{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)}\:\leqslant\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{0}\:\leqslant\:{a},{b},{c}\:\leqslant\:\mathrm{1} \\ $$
Commented by Tony Lin last updated on 01/Jul/19
∵ abc+(1−a)(1−b)(1−c)≥  [(√(abc))+(√((1−a)(1−b)(1−c)))]^2   (using Cauchy′s inequality)  (1−a)(1−b)(1−c)+abc  =1−c−a−b+ac+bc+ab≤1  ∴ (√(abc))+(√((1−a)(1−b)(1−c)))≤1
$$\because\:{abc}+\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)\geqslant \\ $$$$\left[\sqrt{{abc}}+\sqrt{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)}\right]^{\mathrm{2}} \\ $$$$\left({using}\:{Cauchy}'{s}\:{inequality}\right) \\ $$$$\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)+{abc} \\ $$$$=\mathrm{1}−{c}−{a}−{b}+{ac}+{bc}+{ab}\leqslant\mathrm{1} \\ $$$$\therefore\:\sqrt{{abc}}+\sqrt{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)}\leqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *