Menu Close

Prove-that-any-integer-can-be-expressed-as-in-the-form-of-4k-or4k-1-or-4k-2-




Question Number 44059 by paro123 last updated on 20/Sep/18
Prove that any integer can be expressed   as in the form of 4k or4k+_− 1 or 4k+_− 2.
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{any}\:\mathrm{integer}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\: \\ $$$$\mathrm{as}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{4k}\:\mathrm{or4k}\underset{−} {+}\mathrm{1}\:\mathrm{or}\:\mathrm{4k}\underset{−} {+}\mathrm{2}. \\ $$
Answered by kunal1234523 last updated on 21/Sep/18
any integer p can be expressed in the form  p = 4q ± r   here, r = 0,1,2,3  case 1  r=0  p=4q±0=4q  similarly for  r=1 p=4q±1  r=2 p=4q±2  for r=3  p=4q ± 3  p=4q ± 4 ∓1  p=4(q±1)∓1  p=4m∓1 =4m±1 ,m=q±1  this is same for r=1  so p=4q , 4q±1 , 4q ± 2
$${any}\:{integer}\:{p}\:{can}\:{be}\:{expressed}\:{in}\:{the}\:{form} \\ $$$${p}\:=\:\mathrm{4}{q}\:\pm\:{r}\: \\ $$$${here},\:{r}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3} \\ $$$${case}\:\mathrm{1} \\ $$$${r}=\mathrm{0} \\ $$$${p}=\mathrm{4}{q}\pm\mathrm{0}=\mathrm{4}{q} \\ $$$${similarly}\:{for} \\ $$$${r}=\mathrm{1}\:{p}=\mathrm{4}{q}\pm\mathrm{1} \\ $$$${r}=\mathrm{2}\:{p}=\mathrm{4}{q}\pm\mathrm{2} \\ $$$${for}\:{r}=\mathrm{3} \\ $$$${p}=\mathrm{4}{q}\:\pm\:\mathrm{3} \\ $$$${p}=\mathrm{4}{q}\:\pm\:\mathrm{4}\:\mp\mathrm{1} \\ $$$${p}=\mathrm{4}\left({q}\pm\mathrm{1}\right)\mp\mathrm{1} \\ $$$${p}=\mathrm{4}{m}\mp\mathrm{1}\:=\mathrm{4}{m}\pm\mathrm{1}\:,{m}={q}\pm\mathrm{1} \\ $$$${this}\:{is}\:{same}\:{for}\:{r}=\mathrm{1} \\ $$$${so}\:{p}=\mathrm{4}{q}\:,\:\mathrm{4}{q}\pm\mathrm{1}\:,\:\mathrm{4}{q}\:\pm\:\mathrm{2}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *