Menu Close

Prove-that-arctan-x-2arctan-1-x-2-x-pi-2-




Question Number 94241 by Ar Brandon last updated on 17/May/20
Prove that   arctan(x)+2arctan((√(1+x^2 ))−x)=(π/2)
Provethatarctan(x)+2arctan(1+x2x)=π2
Commented by mathmax by abdo last updated on 17/May/20
let ϕ(x) =arctanx +2 srctan((√(1+x^2 ))−x) ⇒  ϕ^′ (x) =(1/(1+x^2 )) +2 ×((((√(1+x^2 ))−x)^′ )/(1+((√(1+x^2 ))−x)^2 ))  =(1/(1+x^2 )) +2×(((x/( (√(1+x^2 ))))−1)/(1+1+x^2 −2x(√(1+x^2 ))+x^2 ))  =(1/(1+x^2 )) +2×((x−(√(1+x^2 )))/( (√(1+x^2 ))(2 +2x^2 −2x(√(1+x^2 )))))  =(1/(1+x^2 )) +((x−(√(1+x^2 )))/( (√(1+x^2 ))(1+x^2 −x(√(1+x^2 )))))  =(((1+x^2 )(√(1+x^2 ))−x(1+x^2 )+(1+x^2 )x−(1+x^2 )(√(1+x^2 )))/((1+x^2 )(√(1+x^2 ))(1+x^2 −x(√(1+x^2 )))))=0 ⇒  ϕ(x)=c  c =ϕ(0) =0 +2arctan(1) =2×(π/4) =(π/2)  the equality is proved.
letφ(x)=arctanx+2srctan(1+x2x)φ(x)=11+x2+2×(1+x2x)1+(1+x2x)2=11+x2+2×x1+x211+1+x22x1+x2+x2=11+x2+2×x1+x21+x2(2+2x22x1+x2)=11+x2+x1+x21+x2(1+x2x1+x2)=(1+x2)1+x2x(1+x2)+(1+x2)x(1+x2)1+x2(1+x2)1+x2(1+x2x1+x2)=0φ(x)=cc=φ(0)=0+2arctan(1)=2×π4=π2theequalityisproved.
Answered by som(math1967) last updated on 17/May/20
tan^(−1) x+2tan^(−1) ((√(1+x^2 ))−x)  tan^(−1) x+tan^(−1) ((2((√(1+x^2 ))−x))/(1−((√(1+x^2 ))−x)^2 ))  tan^(−1) x+tan^(−1) ((2((√(1+x^2 ))−x))/(1−1−x^2 −x^2 +2x(√(1+x^2 ))))   tan^(−1) x+tan^(−1) ((2((√(1+x^2 ))−x))/(2x((√(1+x^2 ))−x)))  tan^(−1) x+tan^(−1) (1/x)  tan^(−1) x+cot^(−1) x  =(π/2)
tan1x+2tan1(1+x2x)tan1x+tan12(1+x2x)1(1+x2x)2tan1x+tan12(1+x2x)11x2x2+2x1+x2tan1x+tan12(1+x2x)2x(1+x2x)tan1x+tan11xtan1x+cot1x=π2

Leave a Reply

Your email address will not be published. Required fields are marked *