prove-that-arctan-x-i-2-ln-i-x-i-x-for-x-lt-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 38112 by maxmathsup by imad last updated on 21/Jun/18 provethatarctan(x)=i2ln(i+xi−x)for∣x∣<1 Commented by prof Abdo imad last updated on 24/Jun/18 wehavei+x=x+i=x2+1(xx2+1+ix2+1)=reiθ⇒r=x2+1andcosθ=xx2+1sinθ=1x2+1⇒tanθ=1x⇒θ=arctan(1x)⇒x+i=x2+1eiarctan(1x)⇒ln(x+i)=12ln(x2+1)+iarctan(1x)andln(−x+i)=ln(−1)+ln(x−i)=iπ+12ln(x2+1)−iarctan(1x)⇒i2ln(i+xi−x)=i2{ln(i+x)−ln(i−x)}=i2{2iarctan(1x)−iπ}=π2−arctan(1x)=arctan(x)if0<x<1if−1<x<0weusethechang.x=−t… Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18 ln(α+iβ)=12ln(α2+β2)+i(2nΠ+tan−1βα)ln(i+xi−x)=ln(i+x)−ln(i−x)ln(i+x)=12ln(1+x2)+i(2nΠ+tan−11x)ln(i−x)=12ln(1+x2)+i(2nΠ+tan−11−x)ln(i+xi−x)=i(tan−11x−tan−11−x)=i(2tan−11x)sothevaluei2ln(i+xi−x)i2×i(2tan−11x)=−tan−1(1x)=tan−1(x)−Π2sincetan−1x=ktank=xcotk=1xtan(Π2−k)=1xtan−1(1x)=Π2−ktan−1(1x)+tan−1(x)=Π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-103647Next Next post: Question-103649 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.