Menu Close

prove-that-arctan-x-i-2-ln-i-x-i-x-for-x-lt-1-




Question Number 38112 by maxmathsup by imad last updated on 21/Jun/18
prove that  arctan(x)= (i/2)ln(((i+x)/(i−x))) for ∣x∣<1
provethatarctan(x)=i2ln(i+xix)forx∣<1
Commented by prof Abdo imad last updated on 24/Jun/18
we have i+x=x+i=(√(x^2 +1))( (x/( (√(x^2  +1)))) +(i/( (√(x^2  +1)))))  =r e^(iθ)  ⇒r=(√(x^2 +1)) and cosθ=(x/( (√(x^2  +1))))  sinθ=(1/( (√(x^2 +1)))) ⇒ tanθ=(1/x) ⇒θ=arctan((1/x)) ⇒  x+i =(√(x^2 +1)) e^(i arctan((1/x)))  ⇒  ln(x+i)=(1/2)ln(x^(2 ) +1) +iarctan((1/x))and  ln(−x+i)=ln(−1) +ln(x−i)  =iπ  +(1/2)ln(x^2 +1)−i arctan((1/x)) ⇒  (i/2)ln(((i+x)/(i−x)))=(i/2){ln(i+x)−ln(i−x)}  =(i/2){ 2i arctan((1/x))−iπ}  =(π/2) −arctan((1/x))=arctan(x) if 0<x<1  if −1<x<0 we use the chang.x=−t...
wehavei+x=x+i=x2+1(xx2+1+ix2+1)=reiθr=x2+1andcosθ=xx2+1sinθ=1x2+1tanθ=1xθ=arctan(1x)x+i=x2+1eiarctan(1x)ln(x+i)=12ln(x2+1)+iarctan(1x)andln(x+i)=ln(1)+ln(xi)=iπ+12ln(x2+1)iarctan(1x)i2ln(i+xix)=i2{ln(i+x)ln(ix)}=i2{2iarctan(1x)iπ}=π2arctan(1x)=arctan(x)if0<x<1if1<x<0weusethechang.x=t
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
ln(α+iβ)=(1/2)ln(α^2 +β^2 )+i(2nΠ+tan^(−1) (β/α))  ln(((i+x)/(i−x)))=ln(i+x)−ln(i−x)  ln(i+x)=(1/2)ln(1+x^2 )+i(2nΠ+tan^(−1) (1/x))  ln(i−x)=(1/2)ln(1+x^2 )+i(2nΠ+tan^(−1) (1/(−x)))  ln(((i+x)/(i−x)))=i(tan^(−1) (1/x)−tan^(−1) (1/(−x)))  =i(2tan^(−1) (1/x))  so the value  (i/2)ln(((i+x)/(i−x)))  (i/2)×i(2tan^(−1) (1/x))  =−tan^(−1) ((1/x))=tan^(−1) (x)−(Π/2)  since  tan^(−1) x=k  tank=x  cotk=(1/x)  tan((Π/2)−k)=(1/x)  tan^(−1) ((1/x))=(Π/2)−k  tan^(−1) ((1/x))+tan^(−1) (x)=(Π/2)
ln(α+iβ)=12ln(α2+β2)+i(2nΠ+tan1βα)ln(i+xix)=ln(i+x)ln(ix)ln(i+x)=12ln(1+x2)+i(2nΠ+tan11x)ln(ix)=12ln(1+x2)+i(2nΠ+tan11x)ln(i+xix)=i(tan11xtan11x)=i(2tan11x)sothevaluei2ln(i+xix)i2×i(2tan11x)=tan1(1x)=tan1(x)Π2sincetan1x=ktank=xcotk=1xtan(Π2k)=1xtan1(1x)=Π2ktan1(1x)+tan1(x)=Π2

Leave a Reply

Your email address will not be published. Required fields are marked *