Menu Close

prove-that-Arg-log-3-4i-1-i-log-3-4i-5-help-me-sir-please-




Question Number 127364 by mohammad17 last updated on 29/Dec/20
prove that: Arg(log(3−4i))=(1/i)log(((3−4i)/5))    help me sir please
provethat:Arg(log(34i))=1ilog(34i5)helpmesirplease
Commented by mohammad17 last updated on 29/Dec/20
pleas help me ?
pleashelpme?
Answered by ebi last updated on 29/Dec/20
  z=log(3−4i)=log(a+bi)  let a+bi=re^(iθ)  (convert to polar form)  where r=(√(a^2 +b^2 )) and θ=arg(a+bi)  r=(√(3^2 +(−4)^2 ))=(√(25))=5  log(3−4i)=log(5e^(iθ) )  log(3−4i)=log(5)+iθ  iθ=log(3−4i)−log(5)  iθ=log(((3−4i)/5))  θ=(1/i)log(((3−4i)/5))  ∴ arg(3−4i)=(1/i)log(((3−4i)/5))
z=log(34i)=log(a+bi)leta+bi=reiθ(converttopolarform)wherer=a2+b2andθ=arg(a+bi)r=32+(4)2=25=5log(34i)=log(5eiθ)log(34i)=log(5)+iθiθ=log(34i)log(5)iθ=log(34i5)θ=1ilog(34i5)arg(34i)=1ilog(34i5)
Commented by mohammad17 last updated on 29/Dec/20
you are a wonderful person ,thank you sir
youareawonderfulperson,thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *