Menu Close

Prove-that-Artimetric-mean-Geometric-mean-a-b-2-ab-




Question Number 151448 by mathdanisur last updated on 21/Aug/21
Prove that:  Artimetric mean ≥ Geometric mean  ((a + b)/2) ≥ (√(ab))
Provethat:ArtimetricmeanGeometricmeana+b2ab
Commented by puissant last updated on 21/Aug/21
∀ (a,b)∈R^2 ,  ((√a)−(√b))^2 ≥0  ⇒ a−2(√(ab))+b≥0  ⇒ 2(√(ab))≤a+b  ⇒ (√(ab)) ≤ ((a+b)/2)..
(a,b)R2,(ab)20a2ab+b02aba+baba+b2..
Commented by mathdanisur last updated on 21/Aug/21
Thank you Ser
ThankyouSer
Answered by nimnim last updated on 21/Aug/21
This inequality hold when a and b are positive.  Since a and b are positive,   (√a)=x and (√b)=y   (say)  then (x−y)^2 ≥0    ⇒ x^2 +y^2 −2xy≥0    ⇒ ((x^2 +y^2 )/2)≥xy    ⇒ ((a+b)/2)≥(√(ab))  ★
Thisinequalityholdwhenaandbarepositive.Sinceaandbarepositive,a=xandb=y(say)then(xy)20x2+y22xy0x2+y22xya+b2ab
Commented by mathdanisur last updated on 21/Aug/21
Thank you Ser
ThankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *