Menu Close

prove-that-asymtotes-y-mx-x-K-n-k-n-1-cuts-the-curve-r-0-n-r-y-x-x-r-in-n-n-1-points-




Question Number 98470 by  M±th+et+s last updated on 14/Jun/20
prove that asymtotes   y=mx−((∂xφ_K )/φ_n )  k=n−1    cuts the curve   Σ_(r=0) ^n φ_r ((y/x))x^r   in n(n−1) points
$${prove}\:{that}\:{asymtotes}\: \\ $$$${y}={mx}−\frac{\partial{x}\phi_{{K}} }{\phi_{{n}} } \\ $$$${k}={n}−\mathrm{1} \\ $$$$ \\ $$$${cuts}\:{the}\:{curve}\: \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\phi_{{r}} \left(\frac{{y}}{{x}}\right){x}^{{r}} \\ $$$${in}\:{n}\left({n}−\mathrm{1}\right)\:{points} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *