Menu Close

prove-that-B-1-A-1-AB-1-if-A-34-12-B-12-13-please-sir-help-me-




Question Number 112906 by mohammad17 last updated on 10/Sep/20
prove that (B^(−1) )(A^(−1) )=(AB)^(−1)  if A=(34,12),B=(12,−13)  please sir help me
$${prove}\:{that}\:\left({B}^{−\mathrm{1}} \right)\left({A}^{−\mathrm{1}} \right)=\left({AB}\right)^{−\mathrm{1}} \:{if}\:{A}=\left(\mathrm{34},\mathrm{12}\right),{B}=\left(\mathrm{12},−\mathrm{13}\right) \\ $$$${please}\:{sir}\:{help}\:{me} \\ $$
Commented by mohammad17 last updated on 10/Sep/20
help me sir
$${help}\:{me}\:{sir} \\ $$
Commented by mohammad17 last updated on 10/Sep/20
yes sir
$${yes}\:{sir} \\ $$
Commented by kaivan.ahmadi last updated on 10/Sep/20
for every A,B we have (AB)^(−1) =B^(−1) A^(−1 ) since  (AB)(B^(−1) A^(−1) )=A(BB^(−1) )A^(−1) =AIA^(−1) =  AA^(−1) =I.
$${for}\:{every}\:{A},{B}\:{we}\:{have}\:\left({AB}\right)^{−\mathrm{1}} ={B}^{−\mathrm{1}} {A}^{−\mathrm{1}\:} {since} \\ $$$$\left({AB}\right)\left({B}^{−\mathrm{1}} {A}^{−\mathrm{1}} \right)={A}\left({BB}^{−\mathrm{1}} \right){A}^{−\mathrm{1}} ={AIA}^{−\mathrm{1}} = \\ $$$${AA}^{−\mathrm{1}} ={I}. \\ $$
Commented by bemath last updated on 10/Sep/20
do you meant A and B are matrix?
$$\mathrm{do}\:\mathrm{you}\:\mathrm{meant}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{matrix}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *