Menu Close

Prove-that-b-2asin-2-when-acos-bsin-c-and-45-




Question Number 26135 by JI Siam last updated on 21/Dec/17
Prove that b=2asin^2 θ ;  when acosθ−bsinθ=c and θ=45°
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{b}=\mathrm{2asin}^{\mathrm{2}} \theta\:; \\ $$$$\mathrm{when}\:\mathrm{acos}\theta−\mathrm{bsin}\theta=\mathrm{c}\:\mathrm{and}\:\theta=\mathrm{45}° \\ $$
Commented by mrW1 last updated on 21/Dec/17
It is not true that b=2a sin^2  θ if c≠0.
$${It}\:{is}\:{not}\:{true}\:{that}\:{b}=\mathrm{2}{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:{if}\:{c}\neq\mathrm{0}. \\ $$
Answered by ajfour last updated on 21/Dec/17
b=a  then  c=0 .
$${b}={a}\:\:{then}\:\:{c}=\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *