Menu Close

Prove-that-C-n-k-1-2pi-pi-pi-2cos-2-n-cos-n-2-k-d-




Question Number 192688 by Erico last updated on 24/May/23
Prove that :  C_n ^k  = (1/(2π)) ∫^(   π) _( −π) (2cos(θ/2))^n cos[((n/2)−k)θ]dθ
Provethat:Cnk=12πππ(2cosθ2)ncos[(n2k)θ]dθ
Answered by witcher3 last updated on 24/May/23
A=(1/π)Re∫_0 ^π (e^(i(x/2)) +e^(−((ix)/2)) )^n e^(i((n/2)−k)x) dx,k∈[0,n]  (e^((ix)/2) +e^(−((ix)/2)) )^n =Σ_(m=0) ^n C_n ^m e^((imx)/2) e^(−(i/2)(n−m)x)   =ΣC_n ^m e^(ix(m−(n/2)))   A=(1/π)ΣC_n ^m Re∫_0 ^π e^(ix(m−(n/2)+(n/2)−k)) dx  =(1/π)ΣC_n ^m Re∫_0 ^π e^(ix(m−k)) dx  ∫_0 ^π e^(i(m−k)x) dx= { (((((−1)^(m−k) −1)/(i(m−k))),m≠k)),((π,m=k)) :}  A=(1/π)Re(Σ_(m≠k) (((−1)^(m−k) −1)/(i(m−k)))C_n ^m +πC_n ^k )  =(1/π).πC_n ^k =C_n ^k   (1/(2π))∫_(−π) ^π (2cos((x/2)))^n cos([(n/2)−k]x)dx=C_n ^k
A=1πRe0π(eix2+eix2)nei(n2k)xdx,k[0,n](eix2+eix2)n=nm=0Cnmeimx2ei2(nm)x=ΣCnmeix(mn2)A=1πΣCnmRe0πeix(mn2+n2k)dx=1πΣCnmRe0πeix(mk)dx0πei(mk)xdx={(1)mk1i(mk),mkπ,m=kA=1πRe(mk(1)mk1i(mk)Cnm+πCnk)=1π.πCnk=Cnk12πππ(2cos(x2))ncos([n2k]x)dx=Cnk

Leave a Reply

Your email address will not be published. Required fields are marked *