Menu Close

prove-that-cos-2-7-cos-4-7-cos-8-7-1-2-




Question Number 168297 by MdNafiz last updated on 07/Apr/22
prove that........  cos ((2Π)/7)+cos ((4Π)/7)+cos ((8Π)/7)=−(1/2)
$$\mathrm{prove}\:\mathrm{that}…….. \\ $$$$\mathrm{cos}\:\frac{\mathrm{2}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{4}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{8}\Pi}{\mathrm{7}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by som(math1967) last updated on 07/Apr/22
let (π/7)=θ    ∴cos2θ+cos4θ+cos8θ  =((2sin2θcos2θ+2sin2θcos4θ+2sin2θcos8θ)/(2sin2θ))  =((sin4θ+sin6θ−sin2θ+sin10θ−sin6θ)/(2sin2θ))  =((sin4θ+sin10θ−sin2θ)/(2sin2θ))  =((2sin7θcos3θ−sin2θ)/(2sin2θ))  =((0−sin2θ)/(2sin2θ))=−(1/2) ★  ★sin7θ=sinπ=0
$${let}\:\frac{\pi}{\mathrm{7}}=\theta \\ $$$$\:\:\therefore{cos}\mathrm{2}\theta+{cos}\mathrm{4}\theta+{cos}\mathrm{8}\theta \\ $$$$=\frac{\mathrm{2}{sin}\mathrm{2}\theta{cos}\mathrm{2}\theta+\mathrm{2}{sin}\mathrm{2}\theta{cos}\mathrm{4}\theta+\mathrm{2}{sin}\mathrm{2}\theta{cos}\mathrm{8}\theta}{\mathrm{2}{sin}\mathrm{2}\theta} \\ $$$$=\frac{{sin}\mathrm{4}\theta+{sin}\mathrm{6}\theta−{sin}\mathrm{2}\theta+{sin}\mathrm{10}\theta−{sin}\mathrm{6}\theta}{\mathrm{2}{sin}\mathrm{2}\theta} \\ $$$$=\frac{{sin}\mathrm{4}\theta+{sin}\mathrm{10}\theta−{sin}\mathrm{2}\theta}{\mathrm{2}{sin}\mathrm{2}\theta} \\ $$$$=\frac{\mathrm{2}{sin}\mathrm{7}\theta{cos}\mathrm{3}\theta−{sin}\mathrm{2}\theta}{\mathrm{2}{sin}\mathrm{2}\theta} \\ $$$$=\frac{\mathrm{0}−{sin}\mathrm{2}\theta}{\mathrm{2}{sin}\mathrm{2}\theta}=−\frac{\mathrm{1}}{\mathrm{2}}\:\bigstar \\ $$$$\bigstar{sin}\mathrm{7}\theta={sin}\pi=\mathrm{0} \\ $$
Commented by peter frank last updated on 08/Apr/22
good
$$\mathrm{good} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *