Menu Close

prove-that-cos-2-a-sin-2-b-sin-acos-a-sin-bcos-b-cot-a-b-




Question Number 82879 by jagoll last updated on 25/Feb/20
prove that   ((cos^2 a+sin^2 b)/(sin acos a + sin bcos b)) = cot (a+b)
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{a}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{b}}{\mathrm{sin}\:\mathrm{acos}\:\mathrm{a}\:+\:\mathrm{sin}\:\mathrm{bcos}\:\mathrm{b}}\:=\:\mathrm{cot}\:\left(\mathrm{a}+\mathrm{b}\right) \\ $$
Commented by mahdi last updated on 25/Feb/20
problem:  for a=0  b=30⇒((cos^2 a+sin^2 b)/(sin acos a + sin bcos b))=((1+0.25)/(0+((√3)/4)))=((5(√3))/3)  and cot(0+30)=(√3)
$$\mathrm{problem}: \\ $$$${for}\:{a}=\mathrm{0}\:\:{b}=\mathrm{30}\Rightarrow\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{a}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{b}}{\mathrm{sin}\:\mathrm{acos}\:\mathrm{a}\:+\:\mathrm{sin}\:\mathrm{bcos}\:\mathrm{b}}=\frac{\mathrm{1}+\mathrm{0}.\mathrm{25}}{\mathrm{0}+\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${and}\:{cot}\left(\mathrm{0}+\mathrm{30}\right)=\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *