Menu Close

Prove-that-cos-4-sin-4-cos-2-sin-2-




Question Number 83036 by otchereabdullai@gmail.com last updated on 27/Feb/20
Prove that cos^4 θ−sin^4 θ=cos^2 θ−sin^2 θ
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{cos}^{\mathrm{4}} \theta−\mathrm{sin}^{\mathrm{4}} \theta=\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{2}} \theta \\ $$
Commented by Tony Lin last updated on 27/Feb/20
cos^4 θ−sin^4 θ  =(cos^2 θ−sin^2 θ)^2 +2sin^2 θcos^2 θ  =((cos4θ+sin4θ+1)/2)≠cos2θ
$${cos}^{\mathrm{4}} \theta−{sin}^{\mathrm{4}} \theta \\ $$$$=\left({cos}^{\mathrm{2}} \theta−{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} +\mathrm{2}{sin}^{\mathrm{2}} \theta{cos}^{\mathrm{2}} \theta \\ $$$$=\frac{{cos}\mathrm{4}\theta+{sin}\mathrm{4}\theta+\mathrm{1}}{\mathrm{2}}\neq{cos}\mathrm{2}\theta \\ $$$$ \\ $$
Commented by MJS last updated on 27/Feb/20
cos θ =c∧sin θ =s  c^4 −s^4 =c^2 −s^2   (c^2 −s^2 )(c^2 +s^2 )=c^2 −s^2   but c^2 +s^2 =1  ⇒ true
$$\mathrm{cos}\:\theta\:={c}\wedge\mathrm{sin}\:\theta\:={s} \\ $$$${c}^{\mathrm{4}} −{s}^{\mathrm{4}} ={c}^{\mathrm{2}} −{s}^{\mathrm{2}} \\ $$$$\left({c}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{s}^{\mathrm{2}} \right)={c}^{\mathrm{2}} −{s}^{\mathrm{2}} \\ $$$$\mathrm{but}\:{c}^{\mathrm{2}} +{s}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{true} \\ $$
Commented by otchereabdullai@gmail.com last updated on 27/Feb/20
thanks prof mjs
$$\mathrm{thanks}\:\mathrm{prof}\:\mathrm{mjs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *