Menu Close

prove-that-cos-4-x-6sin-2-xcos-2-x-sin-4-x-1-x-2-dx-pi-e-4-




Question Number 110056 by mathdave last updated on 27/Aug/20
prove that   ∫_(−∞) ^(+∞) ((cos^4 x−6sin^2 xcos^2 x+sin^4 x)/(1+x^2 ))dx=(π/e^4 )
provethat+cos4x6sin2xcos2x+sin4x1+x2dx=πe4
Answered by mathmax by abdo last updated on 26/Aug/20
A =∫_(−∞) ^(+∞)  ((cos^4 x−sin^4 x −6sin^2 x cos^2 x)/(1+x^2 ))dx ⇒  A =∫_(−∞) ^(+∞)  ((cos^2 x−sin^2 x −6sin^2 x cos^2 x)/(1+x^2 ))dx  =∫_(−∞) ^(+∞)  ((cos(2x)−6((1/2)sin(2x))^2 )/(1+x^2 ))dx =∫_(−∞) ^(+∞)  ((cos(2x)−(3/2)sin^2 (2x))/(1+x^2 ))dx  =∫_(−∞) ^(+∞ )  ((cos(2x))/(x^2  +1))dx−(3/4)∫_(−∞) ^(+∞)  ((1−cos(4x))/(x^2  +1))dx  =∫_(−∞) ^(+∞)  ((cos(2x))/(x^2  +1))ex−(3/4)(π)+(3/4)∫_(−∞) ^(+∞)  ((cos(4x))/(x^2  +1))dx  we have   ∫_(−∞) ^(+∞)  ((cos(2x))/(x^2  +1))dx =Re(∫_(−∞) ^(+∞)  (e^(i2x) /(x^2  +1))dx) and   ∫_(−∞) ^(+∞)  (e^(i2z) /(z^2  +1))dx =2iπ ×Res(f,i) =2iπ×(e^(−2) /(2i)) = πe^(−2)  ⇒  ∫_(−∞) ^(+∞)  ((cos(2x))/(x^2  +1))dx =(π/e^2 )  also ∫_(−∞) ^(+∞) ((cos(4x))/(x^2  +1))dx =Re(∫_(−∞) ^(+∞)  (e^(i4x) /(x^2  +1))dx)  and ∫_(−∞) ^(+∞)  (e^(i4z) /(z^2  +1))dz =2iπ Re(f,i) =2iπ×(e^(−4) /(2i)) =(π/e^4 ) ⇒∫_(−∞) ^(+∞)  ((cos(4x))/(x^2  +1))dx  =(π/e^4 ) ⇒ A =(π/e^2 )−((3π)/4) +(3/4).(π/e^4 ) =(π/e^2 ) +((3π)/(4e^4 ))−((3π)/4)  something went wrong in the question...!
A=+cos4xsin4x6sin2xcos2x1+x2dxA=+cos2xsin2x6sin2xcos2x1+x2dx=+cos(2x)6(12sin(2x))21+x2dx=+cos(2x)32sin2(2x)1+x2dx=+cos(2x)x2+1dx34+1cos(4x)x2+1dx=+cos(2x)x2+1ex34(π)+34+cos(4x)x2+1dxwehave+cos(2x)x2+1dx=Re(+ei2xx2+1dx)and+ei2zz2+1dx=2iπ×Res(f,i)=2iπ×e22i=πe2+cos(2x)x2+1dx=πe2also+cos(4x)x2+1dx=Re(+ei4xx2+1dx)and+ei4zz2+1dz=2iπRe(f,i)=2iπ×e42i=πe4+cos(4x)x2+1dx=πe4A=πe23π4+34.πe4=πe2+3π4e43π4somethingwentwronginthequestion!
Commented by mathdave last updated on 27/Aug/20
i will work it now
iwillworkitnow
Commented by mathdave last updated on 26/Aug/20
the question is very correct
thequestionisverycorrect
Commented by mathmax by abdo last updated on 26/Aug/20
post your answer sir
postyouranswersir
Commented by mathmax by abdo last updated on 27/Aug/20
sorry i have solved  ∫_R   ((cos^4 x−sin^4 x−6sin^2 x cos^2 x)/(1+x^2 ))dx  not ∫_R   ((cos^4 x +sin^4 x −6 sin^2 x cos^2 x)/(1+x^2 ))dx  but the method still  the same...
sorryihavesolvedRcos4xsin4x6sin2xcos2x1+x2dxnotRcos4x+sin4x6sin2xcos2x1+x2dxbutthemethodstillthesame
Answered by mathdave last updated on 27/Aug/20
solution   let  I=∫_R ((cos^4 x+2cos^2 xsin^2 x+sin^4 x−8cos^2 xsin^2 x)/(1+x^2 ))dx  I=∫_R (((cos^2 x+sin^2 x)^2 −2.2^2 sin^2 xcos^2 x)/(1+x^2 ))dx  I=∫_R ((1−2sin^2 (2x))/(1+x^2 ))dx=∫_(−∞) ^(+∞) ((cos(4x))/(1+x^2 ))dx.....(x)  let   t=4    then  I(t)=∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 ))dx.....(r)  I(0)=∫_(−∞) ^(+∞) ((cos(0))/(1+x^2 ))dx=∫_R (1/(1+x^2 ))dx=[tan^(−1) (x)]_(−∞) ^(+∞)   I(0)=(π/2)−(−(π/2))=π............(1)  differentiate equation (x)  under ( t)  I′(t)=−∫_R ((xsin(tx))/(1+x^2 ))dx=∫_R (((x^2 +1−1)sin(tx))/(x(1+x^2 )))dx  I′(t)=∫_(−∞) ^(+∞) ((sin(tx))/x)+∫_R ((sin(tx))/(x(1+x^2 )))dx..........(2)  let  I_1 (t)=∫_(−∞) ^(+∞) ((sin(tx))/x)dx=2∫_0 ^∞ ((sin(tx))/x)dx    but Maz  identity say that  I(a)=∫_0 ^∞ ((sin(ax))/x^n )dx=(π/(2Γ(n)sin(((nπ)/2))))a^(n−1)       has    n=1   and   a=t  ∵I_1 (t)=2∫_0 ^∞ ((sin(tx))/x)dx=2•((πt^((1−1)) )/(2Γ(1)sin((π/2))))=2•(π/2)=π.....(xx)  putting equation (xx)  into equation (2)  I′(t)=−π+∫_R ((sin(tx))/(x(1+x^2 )))dx......(3)   ( at   t=0)  I′(0)=−π.......(4)  again differrentiate  equation  (3) under  (t)  I′′(t)=∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 ))dx=I(t)    (this is the same as equatn  (r)  then     I′′(t)−I(t)=0     (taking the laplace transform)  L[I′′(t)]−L[(I(t)]=0  s^2 I(s)−sI(0)−I′(0)−I(s)=0  but values of    I(0)=π    and    I′(0)=−π  s^2 I(s)−πs+π−I(s)=0  I(s)[s^2 +1]=π[s−1]  I(s)[(s+1)(s−1)]=π[s−1]  I(s)=(π/(s+1))      (now taking inverse laplace transform)  L^(−1) [I(s)]=πL^(−1) [(1/(s+1))]  I(t)=πe^(−t)        ( but   t=4)  I(4)=πe^(−4) =(π/e^4 )  ∵∫_(−∞) ^(+∞) ((cos^4 x−6cos^2 xsin^2 x+sin^4 x)/(1+x^2 ))dx=(π/e^4 )       Q.E.D  by mathdave(27/08/2020)
solutionletI=Rcos4x+2cos2xsin2x+sin4x8cos2xsin2x1+x2dxI=R(cos2x+sin2x)22.22sin2xcos2x1+x2dxI=R12sin2(2x)1+x2dx=+cos(4x)1+x2dx..(x)lett=4thenI(t)=+cos(tx)1+x2dx..(r)I(0)=+cos(0)1+x2dx=R11+x2dx=[tan1(x)]+I(0)=π2(π2)=π(1)differentiateequation(x)under(t)I(t)=Rxsin(tx)1+x2dx=R(x2+11)sin(tx)x(1+x2)dxI(t)=+sin(tx)x+Rsin(tx)x(1+x2)dx.(2)letI1(t)=+sin(tx)xdx=20sin(tx)xdxbutMazidentitysaythatI(a)=0sin(ax)xndx=π2Γ(n)sin(nπ2)an1hasn=1anda=tI1(t)=20sin(tx)xdx=2πt(11)2Γ(1)sin(π2)=2π2=π..(xx)puttingequation(xx)intoequation(2)I(t)=π+Rsin(tx)x(1+x2)dx(3)(att=0)I(0)=π.(4)againdifferrentiateequation(3)under(t)I(t)=+cos(tx)1+x2dx=I(t)(thisisthesameasequatn(r)thenI(t)I(t)=0(takingthelaplacetransform)L[I(t)]L[(I(t)]=0s2I(s)sI(0)I(0)I(s)=0butvaluesofI(0)=πandI(0)=πs2I(s)πs+πI(s)=0I(s)[s2+1]=π[s1]I(s)[(s+1)(s1)]=π[s1]I(s)=πs+1(nowtakinginverselaplacetransform)L1[I(s)]=πL1[1s+1]I(t)=πet(butt=4)I(4)=πe4=πe4+cos4x6cos2xsin2x+sin4x1+x2dx=πe4Q.E.Dbymathdave(27/08/2020)

Leave a Reply

Your email address will not be published. Required fields are marked *