Question Number 110056 by mathdave last updated on 27/Aug/20

Answered by mathmax by abdo last updated on 26/Aug/20

Commented by mathdave last updated on 27/Aug/20

Commented by mathdave last updated on 26/Aug/20

Commented by mathmax by abdo last updated on 26/Aug/20

Commented by mathmax by abdo last updated on 27/Aug/20

Answered by mathdave last updated on 27/Aug/20
![solution let I=∫_R ((cos^4 x+2cos^2 xsin^2 x+sin^4 x−8cos^2 xsin^2 x)/(1+x^2 ))dx I=∫_R (((cos^2 x+sin^2 x)^2 −2.2^2 sin^2 xcos^2 x)/(1+x^2 ))dx I=∫_R ((1−2sin^2 (2x))/(1+x^2 ))dx=∫_(−∞) ^(+∞) ((cos(4x))/(1+x^2 ))dx.....(x) let t=4 then I(t)=∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 ))dx.....(r) I(0)=∫_(−∞) ^(+∞) ((cos(0))/(1+x^2 ))dx=∫_R (1/(1+x^2 ))dx=[tan^(−1) (x)]_(−∞) ^(+∞) I(0)=(π/2)−(−(π/2))=π............(1) differentiate equation (x) under ( t) I′(t)=−∫_R ((xsin(tx))/(1+x^2 ))dx=∫_R (((x^2 +1−1)sin(tx))/(x(1+x^2 )))dx I′(t)=∫_(−∞) ^(+∞) ((sin(tx))/x)+∫_R ((sin(tx))/(x(1+x^2 )))dx..........(2) let I_1 (t)=∫_(−∞) ^(+∞) ((sin(tx))/x)dx=2∫_0 ^∞ ((sin(tx))/x)dx but Maz identity say that I(a)=∫_0 ^∞ ((sin(ax))/x^n )dx=(π/(2Γ(n)sin(((nπ)/2))))a^(n−1) has n=1 and a=t ∵I_1 (t)=2∫_0 ^∞ ((sin(tx))/x)dx=2•((πt^((1−1)) )/(2Γ(1)sin((π/2))))=2•(π/2)=π.....(xx) putting equation (xx) into equation (2) I′(t)=−π+∫_R ((sin(tx))/(x(1+x^2 )))dx......(3) ( at t=0) I′(0)=−π.......(4) again differrentiate equation (3) under (t) I′′(t)=∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 ))dx=I(t) (this is the same as equatn (r) then I′′(t)−I(t)=0 (taking the laplace transform) L[I′′(t)]−L[(I(t)]=0 s^2 I(s)−sI(0)−I′(0)−I(s)=0 but values of I(0)=π and I′(0)=−π s^2 I(s)−πs+π−I(s)=0 I(s)[s^2 +1]=π[s−1] I(s)[(s+1)(s−1)]=π[s−1] I(s)=(π/(s+1)) (now taking inverse laplace transform) L^(−1) [I(s)]=πL^(−1) [(1/(s+1))] I(t)=πe^(−t) ( but t=4) I(4)=πe^(−4) =(π/e^4 ) ∵∫_(−∞) ^(+∞) ((cos^4 x−6cos^2 xsin^2 x+sin^4 x)/(1+x^2 ))dx=(π/e^4 ) Q.E.D by mathdave(27/08/2020)](https://www.tinkutara.com/question/Q110085.png)