Menu Close

prove-that-cos-mx-cos-ny-cos-mx-ny-cos-mx-ny-2-help-me-sir-




Question Number 97142 by mhmd last updated on 06/Jun/20
prove that cos(mx)cos(ny)=((cos(mx+ny)+cos(mx−ny))/2)  ?  help me sir ?
$${prove}\:{that}\:{cos}\left({mx}\right){cos}\left({ny}\right)=\frac{{cos}\left({mx}+{ny}\right)+{cos}\left({mx}−{ny}\right)}{\mathrm{2}}\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$
Commented by mr W last updated on 06/Jun/20
just apply the formulae for  cos (a+b) and cos (a−b).
$${just}\:{apply}\:{the}\:{formulae}\:{for} \\ $$$$\mathrm{cos}\:\left({a}+{b}\right)\:{and}\:\mathrm{cos}\:\left({a}−{b}\right). \\ $$
Commented by mhmd last updated on 06/Jun/20
are you can send steb sir ?
$${are}\:{you}\:{can}\:{send}\:{steb}\:{sir}\:? \\ $$
Commented by mr W last updated on 06/Jun/20
i can, but i don′t want to do!  if you don′t know the formulae for   cos (a+b) and cos (a−b) or how to  apply them, it means you have not  learnt trigonometry yet, then  you won′t be able to understand  the answer even if it is  step by step. in this case it has  totally just one step.
$${i}\:{can},\:{but}\:{i}\:{don}'{t}\:{want}\:{to}\:{do}! \\ $$$${if}\:{you}\:{don}'{t}\:{know}\:{the}\:{formulae}\:{for}\: \\ $$$$\mathrm{cos}\:\left({a}+{b}\right)\:{and}\:\mathrm{cos}\:\left({a}−{b}\right)\:{or}\:{how}\:{to} \\ $$$${apply}\:{them},\:{it}\:{means}\:{you}\:{have}\:{not} \\ $$$${learnt}\:{trigonometry}\:{yet},\:{then} \\ $$$${you}\:{won}'{t}\:{be}\:{able}\:{to}\:{understand} \\ $$$${the}\:{answer}\:{even}\:{if}\:{it}\:{is} \\ $$$${step}\:{by}\:{step}.\:{in}\:{this}\:{case}\:{it}\:{has} \\ $$$${totally}\:{just}\:{one}\:{step}. \\ $$
Answered by mathmax by abdo last updated on 06/Jun/20
we have cos(mx+ny) =cos(mx)cos(ny)−sin(nx)sin(ny) (1)  cos(mx−ny) =cos(mx)cos(ny)+sin(nx)sin(ny)  (2)  (1)+(2) ⇒cos(mx+ny)+cos(mx−ny) =2cos(mx)cos(ny) ⇒  cos(mx)cos(ny) =(1/2)(cos(mx+ny)+cos(mx−ny)).  another way by use  cos(mx) =((e^(imx)  +e^(−imx) )/2) and cos(ny) =((e^(iny)  +e^(−iny) )/2)
$$\mathrm{we}\:\mathrm{have}\:\mathrm{cos}\left(\mathrm{mx}+\mathrm{ny}\right)\:=\mathrm{cos}\left(\mathrm{mx}\right)\mathrm{cos}\left(\mathrm{ny}\right)−\mathrm{sin}\left(\mathrm{nx}\right)\mathrm{sin}\left(\mathrm{ny}\right)\:\left(\mathrm{1}\right) \\ $$$$\mathrm{cos}\left(\mathrm{mx}−\mathrm{ny}\right)\:=\mathrm{cos}\left(\mathrm{mx}\right)\mathrm{cos}\left(\mathrm{ny}\right)+\mathrm{sin}\left(\mathrm{nx}\right)\mathrm{sin}\left(\mathrm{ny}\right)\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\Rightarrow\mathrm{cos}\left(\mathrm{mx}+\mathrm{ny}\right)+\mathrm{cos}\left(\mathrm{mx}−\mathrm{ny}\right)\:=\mathrm{2cos}\left(\mathrm{mx}\right)\mathrm{cos}\left(\mathrm{ny}\right)\:\Rightarrow \\ $$$$\mathrm{cos}\left(\mathrm{mx}\right)\mathrm{cos}\left(\mathrm{ny}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\left(\mathrm{mx}+\mathrm{ny}\right)+\mathrm{cos}\left(\mathrm{mx}−\mathrm{ny}\right)\right). \\ $$$$\mathrm{another}\:\mathrm{way}\:\mathrm{by}\:\mathrm{use}\:\:\mathrm{cos}\left(\mathrm{mx}\right)\:=\frac{\mathrm{e}^{\mathrm{imx}} \:+\mathrm{e}^{−\mathrm{imx}} }{\mathrm{2}}\:\mathrm{and}\:\mathrm{cos}\left(\mathrm{ny}\right)\:=\frac{\mathrm{e}^{\mathrm{iny}} \:+\mathrm{e}^{−\mathrm{iny}} }{\mathrm{2}} \\ $$
Answered by 1549442205 last updated on 07/Jun/20
The formulas to transform in trigonometry as:  i) cos𝛟+cos𝛙=2cos((𝛟+𝛙)/2)cos((𝛟−𝛙)/2)  ii) cos𝛟−cos𝛙=−2sin((𝛟+𝛙)/2)sin((𝛟−𝛙)/2)  iii)sin𝛟+sin𝛙=2sin((𝛟+𝛙)/2)cos((𝛟−𝛙)/2)  iv)sin𝛟−sin𝛙=2cos((𝛟+𝛙)/2)sin((𝛟−𝛙)/2)
$$\mathrm{The}\:\mathrm{formulas}\:\mathrm{to}\:\mathrm{transform}\:\mathrm{in}\:\mathrm{trigonometry}\:\mathrm{as}: \\ $$$$\left.\boldsymbol{\mathrm{i}}\right)\:\boldsymbol{\mathrm{cos}\varphi}+\boldsymbol{\mathrm{cos}\psi}=\mathrm{2}\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\varphi}+\boldsymbol{\psi}}{\mathrm{2}}\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\varphi}−\boldsymbol{\psi}}{\mathrm{2}} \\ $$$$\left.\boldsymbol{\mathrm{ii}}\right)\:\boldsymbol{\mathrm{cos}\varphi}−\boldsymbol{\mathrm{cos}\psi}=−\mathrm{2}\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\varphi}+\boldsymbol{\psi}}{\mathrm{2}}\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\varphi}−\boldsymbol{\psi}}{\mathrm{2}} \\ $$$$\left.\boldsymbol{\mathrm{iii}}\right)\boldsymbol{\mathrm{sin}\varphi}+\boldsymbol{\mathrm{sin}\psi}=\mathrm{2}\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\varphi}+\boldsymbol{\psi}}{\mathrm{2}}\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\varphi}−\boldsymbol{\psi}}{\mathrm{2}} \\ $$$$\left.\boldsymbol{\mathrm{iv}}\right)\boldsymbol{\mathrm{sin}\varphi}−\boldsymbol{\mathrm{sin}\psi}=\mathrm{2}\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\varphi}+\boldsymbol{\psi}}{\mathrm{2}}\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\varphi}−\boldsymbol{\psi}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *