Menu Close

prove-that-cos-n-sin-n-n-converge-sequence-




Question Number 129997 by mohammad17 last updated on 21/Jan/21
prove that [(cos(n)+sin(n))/n] converge sequence
provethat[(cos(n)+sin(n))/n]convergesequence
Answered by Dwaipayan Shikari last updated on 21/Jan/21
Σ_(n=1) ^∞ ((cosn+sinn)/n)=(1/2)Σ_(n=1) ^∞ (e^(in) /n)+(e^(−in) /n)+(1/(2i))Σ_(n=1) ^∞ (e^(in) /n)−(e^(−in) /n)  =−(1/2)(log(1−2cos1+1)+log(((1−e^i )/(1−e^(−i) )))  =(1/2)log((1/(4sin^2 (1/2))))+(π/2)−(1/2)=(1/2)(π−1−log(4sin^2 (1/2)))∼1.11
n=1cosn+sinnn=12n=1einn+einn+12in=1einneinn=12(log(12cos1+1)+log(1ei1ei)=12log(14sin212)+π212=12(π1log(4sin212))1.11
Commented by mohammad17 last updated on 21/Jan/21
thank you sir but i want this by analyetic function
thankyousirbutiwantthisbyanalyeticfunction
Answered by mathmax by abdo last updated on 21/Jan/21
let u_n =((cos(n)+sin(n))/n) ⇒u_n =(((√2)cos(n−(π/4)))/n)  ⇒Σ_(n=1) ^∞  u_n =(√2)Σ_(n=1) ^∞  ((cos(n−(π/4)))/n)=(√2)Σ_(n=1) ^∞  α_n .β_n   α_n  decrease to  and we can determine m>0 /  ∣Σ_(k=1) ^n  β_k ∣≤m   so the convergence is assured by abel dirichlet   theorem..
letun=cos(n)+sin(n)nun=2cos(nπ4)nn=1un=2n=1cos(nπ4)n=2n=1αn.βnαndecreasetoandwecandeterminem>0/k=1nβk∣⩽msotheconvergenceisassuredbyabeldirichlettheorem..
Commented by mathmax by abdo last updated on 21/Jan/21
α_n  decrease to 0
αndecreaseto0
Commented by mohammad17 last updated on 21/Jan/21
but sir this is sequence not series and my   teacher sayd me it want the solution by    ∀∈>0 ∃k∈N Such that ∣x_n −x_0 ∣<∈ ∀n>k    can help me?sir
butsirthisissequencenotseriesandmyteachersaydmeitwantthesolutionby∈>0kNSuchthatxnx0∣<∈n>kcanhelpme?sir
Commented by mathmax by abdo last updated on 22/Jan/21
your teacher want to turn you to stone era ...no need to use ξ  look we have  ((cosn +sinn)/n)=(((√2)cos(n−(π/4)))/n) ⇒  ∣((cos(n)+sin(n))/n)∣≤((√2)/n)→0 ⇒lim_(n→+∞) ((cosn +sinn)/n)=0
yourteacherwanttoturnyoutostoneeranoneedtouseξlookwehavecosn+sinnn=2cos(nπ4)ncos(n)+sin(n)n∣⩽2n0limn+cosn+sinnn=0

Leave a Reply

Your email address will not be published. Required fields are marked *