Menu Close

prove-that-cos-x-2-2x-x-2-2-dx-pi-e-cos-1-




Question Number 162073 by mnjuly1970 last updated on 26/Dec/21
      prove that     Ω =∫_(−∞) ^( +∞) (( cos (x))/((2+ 2x +x^( 2) )^( 2) )) dx = (π/e) cos(1)
provethatΩ=+cos(x)(2+2x+x2)2dx=πecos(1)
Answered by mindispower last updated on 26/Dec/21
Ω=∫_(−∞) ^∞ ((cos(x))/((1+(1+x)^2 )^2 ))dx  1+x=t  =∫_(−∞) ^∞ ((cos(t−1))/((1+t^2 )^2 ))dt=∫_(−∞) ^∞ ((cos(t)cos(1))/((1+t^2 )^2 ))dt+sin(1)∫_(−∞) ^∞ ((sin(t))/((1+t^2 )^2 ))dt_(=0)   =cos(1)∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))  f(a)=∫_(−∞) ^∞ ((cos(t))/(a^2 +t^2 ))=Re∫_(−∞) ^∞ (e^(it) /(a^2 +t^2 ))=Re(2iπ.e^(−a) .(1/(2ia)))  =(π/a)e^(−a) =f(a)  f′(a)=∫_(−∞) ^∞ ((−2acos(t))/((a^2 +t^2 )^2 ))dt  f′(1)=−2∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))  f′(a)=(−(π/a^2 )e^(−a) −(π/a)e^(−a) )  ∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))=(1/2).((2π)/e)=(π/e)  ∫_(−∞) ^∞ ((cost))/((2+2t+t^2 )^2 ))dt=cos(1)∫((cos(x))/((1+x^2 )^2 ))dx=cos(1)(π/e)
Ω=cos(x)(1+(1+x)2)2dx1+x=t=cos(t1)(1+t2)2dt=cos(t)cos(1)(1+t2)2dt+sin(1)sin(t)(1+t2)2dt=0=cos(1)cos(t)dt(1+t2)2f(a)=cos(t)a2+t2=Reeita2+t2=Re(2iπ.ea.12ia)=πaea=f(a)f(a)=2acos(t)(a2+t2)2dtf(1)=2cos(t)dt(1+t2)2f(a)=(πa2eaπaea)cos(t)dt(1+t2)2=12.2πe=πecost)(2+2t+t2)2dt=cos(1)cos(x)(1+x2)2dx=cos(1)πe
Commented by Tawa11 last updated on 26/Dec/21
Great sir
Greatsir
Commented by mnjuly1970 last updated on 26/Dec/21
   excellent solution sir power...
excellentsolutionsirpower
Answered by Mathspace last updated on 26/Dec/21
Υ=∫_(−∞) ^(+∞)  ((cosx)/((x^2 +2x+2)^2 ))dx  Υ=Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2 +2x+2)^2 ))dx)  let f(z)=(e^(iz) /((z^2 +2z+2)^2 )) poles of f?  z^(2 ) +2z+2=0→Δ^′ =1−2=−1 ⇒  z_1 =−1+i  and z_2 =−1−i  ∫_R f(z)dz =2iπRes(f,z_1 )  z_1 pole double ⇒  Res(f,z_1 )=lim_(z→z_1 )  (1/((2−1)!)){(z−z_1 )^2 f(z)}^((1))   =lim_(z→z_1 )    { (e^(iz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z_1 )    ((ie^(iz) (z−z_2 )^2 −2(z−z_2 )e^(iz) )/((z−z_2 )^4 ))  =lim_(z→z_1 )    (({i(z−z_2 )−2}e^(iz) )/((z−z_2 )^3 ))  =(({i(z_1 −z_2 )−2}e^(iz1) )/((z_1 −z_2 )^3 ))  =(({i(2i)−2}e^(i(−1+i)) )/((2i)^3 ))  =(({−2−2}e^(−1) {cos(1)−isin(1)})/(−8i))  =(1/(4i))e^(−1) {cos(1)−isin(1)} ⇒  ∫_(−∞) ^(+∞) f(z)dz=((2iπ)/(4i))e^(−1) {cos(1)−isin(1)}  =(π/2)e^(−1) {cos(1)−isin(1)}  and Υ=Re(...)  =(π/(2e))cos(1)
Υ=+cosx(x2+2x+2)2dxΥ=Re(+eix(x2+2x+2)2dx)letf(z)=eiz(z2+2z+2)2polesoff?z2+2z+2=0Δ=12=1z1=1+iandz2=1iRf(z)dz=2iπRes(f,z1)z1poledoubleRes(f,z1)=limzz11(21)!{(zz1)2f(z)}(1)=limzz1{eiz(zz2)2}(1)=limzz1ieiz(zz2)22(zz2)eiz(zz2)4=limzz1{i(zz2)2}eiz(zz2)3={i(z1z2)2}eiz1(z1z2)3={i(2i)2}ei(1+i)(2i)3={22}e1{cos(1)isin(1)}8i=14ie1{cos(1)isin(1)}+f(z)dz=2iπ4ie1{cos(1)isin(1)}=π2e1{cos(1)isin(1)}andΥ=Re()=π2ecos(1)
Commented by mnjuly1970 last updated on 26/Dec/21
thanks alot master
thanksalotmaster
Answered by Ar Brandon last updated on 24/Mar/22
Ω=∫_(−∞) ^(+∞) ((cosx)/((x^2 +2x+2)^2 ))dx  ϕ(z)=(e^(iz) /((z^2 +2z+2)^2 ))    ,   Poles: z_1 =((−2+2i)/2)=(√2)e^(((3π)/4)i) , z_2 =(√2)e^(−(π/4)i)   Ω=Re∫_(−∞) ^(+∞) ϕ(z)dz=Re(2iπRes(ϕ, z_1 ))  Res (ϕ, z_1 )=lim_(z→z_1 ) (d/dz){(z−z_1 )^2 ϕ(z)}=lim_(z→z_1 ) (d/dz){(e^(iz) /((z−z_2 )^2 ))}  =lim_(z→z_1 ) {((ie^(iz) (z−z_2 )^2 −2e^(iz) (z−z_2 ))/((z−z_2 )^4 ))}=((ie^(iz_1 ) (z_1 −z_2 )^2 −2e^(iz_1 ) (z_1 −z_2 ))/((z_1 −z_2 )^4 ))  =((ie^(i(−1+i)) (2i)^2 −2e^(i(−1+i)) (2i))/(16))=−((4ie^(−(1+i)) +4ie^(−(1+i)) )/(16))  =−(1/(2e))×e^(((π/2)−1)i) =−(1/(2e))(sin(1)+icos(1))  ⇒Re(2iπRes(ϕ, z_1 )=(π/e)cos(1)  ⇒ determinant (((∫_(−∞) ^(+∞) ((cosx)/((x^2 +2x+2)^2 ))dx=(π/e)cos(1))))
Ω=+cosx(x2+2x+2)2dxφ(z)=eiz(z2+2z+2)2,Poles:z1=2+2i2=2e3π4i,z2=2eπ4iΩ=Re+φ(z)dz=Re(2iπRes(φ,z1))Res(φ,z1)=limzz1ddz{(zz1)2φ(z)}=limzz1ddz{eiz(zz2)2}=limzz1{ieiz(zz2)22eiz(zz2)(zz2)4}=ieiz1(z1z2)22eiz1(z1z2)(z1z2)4=iei(1+i)(2i)22ei(1+i)(2i)16=4ie(1+i)+4ie(1+i)16=12e×e(π21)i=12e(sin(1)+icos(1))Re(2iπRes(φ,z1)=πecos(1)+cosx(x2+2x+2)2dx=πecos(1)

Leave a Reply

Your email address will not be published. Required fields are marked *