Menu Close

prove-that-cot-x-cot-2x-cot-2x-cot-3x-2-cot-x-cot-x-cot-3x-




Question Number 105916 by bobhans last updated on 02/Aug/20
prove that cot x. cot 2x +cot 2x. cot 3x+2 =  cot x.(cot x−cot 3x)
provethatcotx.cot2x+cot2x.cot3x+2=cotx.(cotxcot3x)
Answered by bemath last updated on 01/Aug/20
cot x cot 2x + cot 2x cot 3x =   cot 2x (cot x+cot 3x)=  (((cot^2 x−1)/(2cot x))) (cot x+((cot^3 x−3cot x)/(3cot^2 x−1)))=  ((cot^2 x−1)/(2cot x)) .((3cot^3 x−cot x+cot^3 x−3cot x)/(3cot^2 x−1))  ((cot^2 x−1)/(2cot x)) .((4cot^3 x−4cot x)/(3cot^2 x−1))=  (cot^2 x−1).((2cot^2 x−2)/(3cot^2 x−1)) =   ((2cot^3 x−2cot^2 x−2cot^2 x+2)/(3cot^2 x−1)) =  ((2cot^3 x−4cot^2 x+2)/(3cot^2 x−1)).
cotxcot2x+cot2xcot3x=cot2x(cotx+cot3x)=(cot2x12cotx)(cotx+cot3x3cotx3cot2x1)=cot2x12cotx.3cot3xcotx+cot3x3cotx3cot2x1cot2x12cotx.4cot3x4cotx3cot2x1=(cot2x1).2cot2x23cot2x1=2cot3x2cot2x2cot2x+23cot2x1=2cot3x4cot2x+23cot2x1.
Answered by bobhans last updated on 02/Aug/20
consider cot 2x cot 3x + cot x cot 3x =  cot (2x+x)(cot 2x+ cot x)=  ((cot x cot 2x−1)/(cot 2x+cot x))(cot 2x+cot x) =  cot x cot 2x−1   adding cot x cot 2x both sides,   cot x cot 2x+cot 2x cot 3x + cot x cot 3x=  2cot x cot 2x−1  cot x cot 2x +cot 2x cot 3x+cot x cot 3x+2=  2cot x cot 2x+1  ∴ 2(((cos x)/(sin x)))(((cos 2x)/(sin 2x)))+1=2(((cos x)/(sin x)))(((cos^2 x−sin^2 x)/(2sin xcos x)))+1  = cot^2 x  ∴ cot x cot 2x + cot 2x cot 3x = cot^2 x−cot xcot 3x  cot x cot 2x+cot 2xcot 3x=cot x(cot x−cot 3x)
considercot2xcot3x+cotxcot3x=cot(2x+x)(cot2x+cotx)=cotxcot2x1cot2x+cotx(cot2x+cotx)=cotxcot2x1addingcotxcot2xbothsides,cotxcot2x+cot2xcot3x+cotxcot3x=2cotxcot2x1cotxcot2x+cot2xcot3x+cotxcot3x+2=2cotxcot2x+12(cosxsinx)(cos2xsin2x)+1=2(cosxsinx)(cos2xsin2x2sinxcosx)+1=cot2xcotxcot2x+cot2xcot3x=cot2xcotxcot3xcotxcot2x+cot2xcot3x=cotx(cotxcot3x)

Leave a Reply

Your email address will not be published. Required fields are marked *