Menu Close

Prove-that-cot7-5-2-3-4-6-




Question Number 102587 by 1549442205 last updated on 10/Jul/20
Prove that  cot7.5°=(√2)+(√3)+(√4)+(√6)
Provethatcot7.5°=2+3+4+6
Commented by PRITHWISH SEN 2 last updated on 10/Jul/20
a different approach  cot θ=((cos θ)/(sin θ)) = ((2cos 7θcos θ)/(2cos 7θsin θ))  = ((cos 8θ+cos 6θ)/(sin 8θ−sin 6θ))  put θ=7∙5  cot 7∙5= ((cos 60+cos 45)/(sin 60−sin 45))=(((1+(√2)))/(((√3)−(√2))))=(1+(√2))((√3)+(√2))  =(√2)+ (√3) +(√4) +(√6)
adifferentapproachcotθ=cosθsinθ=2cos7θcosθ2cos7θsinθ=cos8θ+cos6θsin8θsin6θputθ=75cot75=cos60+cos45sin60sin45=(1+2)(32)=(1+2)(3+2)=2+3+4+6
Answered by Dwaipayan Shikari last updated on 10/Jul/20
Method 1 )  cot7.5°=((cos7.5°)/(sin7.5))=((2cos^2 7.5°)/(sin15°))=((1+cos15°)/(sin15°))=((2cos15°+1+cos30°)/(sin30°))          cos15=(((√3)+1)/(2(√2)))                                                          =2((((√3)+1)/( (√2)))+1+(√3).(1/2))                                                                                                  =2((((√6)+(√2)+(√4)+(√3))/2))  so    cot7.5°=(√2)+(√3)+(√4)+(√6) (  proved)      Method 2  cos(π/(24))=(√((1/2)(1+cos(π/(12)))))=(√((1/2)(1+(((√3)+1)/(2(√2))))))=(1/2)(√((2(√2)+(√3)+1)/( (√2))))                                                                                          (1/(2(√2)))(√(4+(√6)+(√2)))  sin(π/(24))=(1/(2(√2))).(√(4−(√6)−(√2)))  cot(π/(24))=(√((4+(√6)+(√2))/(4−(√6)−(√2))))=((4+(√6)+(√2))/(16−8−2(√(12)))) =(1/2).((4+(√6)+(√2))/(4−(√(12))))=(1/2).(((4+(√6)+(√2))(4+(√(12))))/4)    =(1/8)(16+4(√6)+4(√2)+4(√(12))+6(√2)+2(√(12)))  =2+(√(3/2))+(1/( (√2)))+(√3)+(3/(2(√2)))+((√3)/(2(√2)))  =(√4)+((2(√3)+2+2(√6)+3+(√3))/(2(√2)))=(√4)+(√2)+(√3)+(√6)
Method1)cot7.5°=cos7.5°sin7.5=2cos27.5°sin15°=1+cos15°sin15°=2cos15°+1+cos30°sin30°cos15=3+122=2(3+12+1+3.12)=2(6+2+4+32)socot7.5°=2+3+4+6(proved)Method2cosπ24=12(1+cosπ12)=12(1+3+122)=1222+3+121224+6+2sinπ24=122.462cotπ24=4+6+2462=4+6+2168212=12.4+6+2412=12.(4+6+2)(4+12)4=18(16+46+42+412+62+212)=2+32+12+3+322+322=4+23+2+26+3+322=4+2+3+6
Commented by bemath last updated on 10/Jul/20
how ((cos 7.5^o )/(sin 7.5^o )) = ((2cos^2 7.5^o )/(sin 7.5^o )) ?
howcos7.5osin7.5o=2cos27.5osin7.5o?
Commented by Dwaipayan Shikari last updated on 10/Jul/20
multiplying by 2cos7.5°
multiplyingby2cos7.5°
Commented by Dwaipayan Shikari last updated on 10/Jul/20
It is sin 15°
Itissin15°
Commented by bemath last updated on 10/Jul/20
oo sin 15^o . thank
oosin15o.thank
Answered by bobhans last updated on 10/Jul/20
tan 15^o  = tan (2×7.5^o ) = ((2tan 7.5^o )/(1−tan^2 (7.5^o )))  (1) tan 15^o =tan (45^o −30^o )=((1−(1/( (√3))))/(1+(1/( (√3))))) =  (((√3)−1)/( (√3)+1)) = ((4−2(√3))/2) = 2−(√3)   (2) set tan 7.5^o  = x  (2−(√3))(1−x^2 )= 2x  (2−(√3))x^2 +2x−(2−(√3) )=0  x = ((−2+ (√(4+4(2−(√3))^2 )))/(2(2−(√3)))) =  ((−1+(√(1+7−4(√3))))/(2−(√3))) = ((−1+(√(8−2(√(12)))))/(2−(√3))) =  ((−1+(√6)−(√2))/(2−(√3))) = ((((√6)−(√2)−1)(2+(√3)))/1) =  2(√6)+3(√2)−2(√2)−(√6)−2−(√3)=  (√6)+(√2)−2−(√3) = tan 7.5^o
tan15o=tan(2×7.5o)=2tan7.5o1tan2(7.5o)(1)tan15o=tan(45o30o)=1131+13=313+1=4232=23(2)settan7.5o=x(23)(1x2)=2x(23)x2+2x(23)=0x=2+4+4(23)22(23)=1+1+74323=1+821223=1+6223=(621)(2+3)1=26+3222623=6+223=tan7.5o

Leave a Reply

Your email address will not be published. Required fields are marked *