Question Number 102587 by 1549442205 last updated on 10/Jul/20
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{cot7}.\mathrm{5}°=\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}+\sqrt{\mathrm{6}} \\ $$
Commented by PRITHWISH SEN 2 last updated on 10/Jul/20
$$\mathrm{a}\:\mathrm{different}\:\mathrm{approach} \\ $$$$\mathrm{cot}\:\theta=\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}\:=\:\frac{\mathrm{2cos}\:\mathrm{7}\theta\mathrm{cos}\:\theta}{\mathrm{2cos}\:\mathrm{7}\theta\mathrm{sin}\:\theta} \\ $$$$=\:\frac{\mathrm{cos}\:\mathrm{8}\theta+\mathrm{cos}\:\mathrm{6}\theta}{\mathrm{sin}\:\mathrm{8}\theta−\mathrm{sin}\:\mathrm{6}\theta} \\ $$$$\mathrm{put}\:\theta=\mathrm{7}\centerdot\mathrm{5} \\ $$$$\mathrm{cot}\:\mathrm{7}\centerdot\mathrm{5}=\:\frac{\mathrm{cos}\:\mathrm{60}+\mathrm{cos}\:\mathrm{45}}{\mathrm{sin}\:\mathrm{60}−\mathrm{sin}\:\mathrm{45}}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right) \\ $$$$=\sqrt{\mathrm{2}}+\:\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{4}}\:+\sqrt{\mathrm{6}} \\ $$
Answered by Dwaipayan Shikari last updated on 10/Jul/20
$$\left.{Method}\:\mathrm{1}\:\right)\:\:{cot}\mathrm{7}.\mathrm{5}°=\frac{{cos}\mathrm{7}.\mathrm{5}°}{{sin}\mathrm{7}.\mathrm{5}}=\frac{\mathrm{2}{cos}^{\mathrm{2}} \mathrm{7}.\mathrm{5}°}{{sin}\mathrm{15}°}=\frac{\mathrm{1}+{cos}\mathrm{15}°}{{sin}\mathrm{15}°}=\frac{\mathrm{2}{cos}\mathrm{15}°+\mathrm{1}+{cos}\mathrm{30}°}{{sin}\mathrm{30}°} \\ $$$$\:\:\:\:\:\:\:\:{cos}\mathrm{15}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{1}+\sqrt{\mathrm{3}}.\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{4}}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${so}\:\:\:\:{cot}\mathrm{7}.\mathrm{5}°=\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}+\sqrt{\mathrm{6}}\:\left(\:\:\boldsymbol{{proved}}\right) \\ $$$$ \\ $$$$ \\ $$$${Method}\:\mathrm{2} \\ $$$${cos}\frac{\pi}{\mathrm{24}}=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{cos}\frac{\pi}{\mathrm{12}}\right)}=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\sqrt{\mathrm{4}+\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}} \\ $$$${sin}\frac{\pi}{\mathrm{24}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}.\sqrt{\mathrm{4}−\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}} \\ $$$${cot}\frac{\pi}{\mathrm{24}}=\sqrt{\frac{\mathrm{4}+\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}−\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}}=\frac{\mathrm{4}+\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{16}−\mathrm{8}−\mathrm{2}\sqrt{\mathrm{12}}}\:=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{4}+\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}−\sqrt{\mathrm{12}}}=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\left(\mathrm{4}+\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}\right)\left(\mathrm{4}+\sqrt{\mathrm{12}}\right)}{\mathrm{4}} \\ $$$$ \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{16}+\mathrm{4}\sqrt{\mathrm{6}}+\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{4}\sqrt{\mathrm{12}}+\mathrm{6}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{12}}\right) \\ $$$$=\mathrm{2}+\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\sqrt{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{4}}+\frac{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{2}+\mathrm{2}\sqrt{\mathrm{6}}+\mathrm{3}+\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{2}}}=\sqrt{\mathrm{4}}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{6}} \\ $$$$ \\ $$
Commented by bemath last updated on 10/Jul/20
$${how}\:\frac{\mathrm{cos}\:\mathrm{7}.\mathrm{5}^{{o}} }{\mathrm{sin}\:\mathrm{7}.\mathrm{5}^{{o}} }\:=\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{7}.\mathrm{5}^{{o}} }{\mathrm{sin}\:\mathrm{7}.\mathrm{5}^{{o}} }\:? \\ $$
Commented by Dwaipayan Shikari last updated on 10/Jul/20
$${multiplying}\:{by}\:\mathrm{2}{cos}\mathrm{7}.\mathrm{5}° \\ $$
Commented by Dwaipayan Shikari last updated on 10/Jul/20
$${It}\:{is}\:{sin}\:\mathrm{15}° \\ $$
Commented by bemath last updated on 10/Jul/20
$${oo}\:\mathrm{sin}\:\mathrm{15}^{{o}} .\:{thank} \\ $$
Answered by bobhans last updated on 10/Jul/20
$$\mathrm{tan}\:\mathrm{15}^{{o}} \:=\:\mathrm{tan}\:\left(\mathrm{2}×\mathrm{7}.\mathrm{5}^{{o}} \right)\:=\:\frac{\mathrm{2tan}\:\mathrm{7}.\mathrm{5}^{{o}} }{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{7}.\mathrm{5}^{{o}} \right)} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{tan}\:\mathrm{15}^{{o}} =\mathrm{tan}\:\left(\mathrm{45}^{{o}} −\mathrm{30}^{{o}} \right)=\frac{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:= \\ $$$$\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\:=\:\frac{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\:\mathrm{2}−\sqrt{\mathrm{3}}\: \\ $$$$\left(\mathrm{2}\right)\:{set}\:\mathrm{tan}\:\mathrm{7}.\mathrm{5}^{{o}} \:=\:{x} \\ $$$$\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\:\mathrm{2}{x} \\ $$$$\left(\mathrm{2}−\sqrt{\mathrm{3}}\right){x}^{\mathrm{2}} +\mathrm{2}{x}−\left(\mathrm{2}−\sqrt{\mathrm{3}}\:\right)=\mathrm{0} \\ $$$${x}\:=\:\frac{−\mathrm{2}+\:\sqrt{\mathrm{4}+\mathrm{4}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }}{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)}\:= \\ $$$$\frac{−\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}}}{\mathrm{2}−\sqrt{\mathrm{3}}}\:=\:\frac{−\mathrm{1}+\sqrt{\mathrm{8}−\mathrm{2}\sqrt{\mathrm{12}}}}{\mathrm{2}−\sqrt{\mathrm{3}}}\:= \\ $$$$\frac{−\mathrm{1}+\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}−\sqrt{\mathrm{3}}}\:=\:\frac{\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)}{\mathrm{1}}\:= \\ $$$$\mathrm{2}\sqrt{\mathrm{6}}+\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{6}}−\mathrm{2}−\sqrt{\mathrm{3}}= \\ $$$$\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}−\mathrm{2}−\sqrt{\mathrm{3}}\:=\:\mathrm{tan}\:\mathrm{7}.\mathrm{5}^{{o}} \\ $$$$ \\ $$