Menu Close

prove-that-coth-x-1-x-n-1-2x-x-2-n-2-pi-2-x-0-




Question Number 38207 by prof Abdo imad last updated on 22/Jun/18
prove that coth(x)−(1/x) =Σ_(n=1) ^∞   ((2x)/(x^2  +n^2 π^2 ))  (x≠0)
provethatcoth(x)1x=n=12xx2+n2π2(x0)
Commented by math khazana by abdo last updated on 25/Jun/18
we have proved that  ch(αx)=((sh(πα))/(πα))  +((2α)/π)sh(πα)Σ_(n=1) ^∞  (((−1)^n )/(α^2  +n^2 ))cos(nx)  x=π ⇒ch(πα)=((sh(πα))/(πα)) +((2α)/π)sh(πα)Σ_(n=1) ^∞   (1/(α^2  +n^2 ))  ⇒coth(πα)=(1/(πα)) + ((2α)/π) Σ_(n=1) ^∞   (1/(α^2  +n^2 ))  changement πα=x give  coth(x)=(1/x)  +(2/π) (x/π) Σ_(n=1) ^∞    (1/((x^2 /π^2 ) +n^2 ))  = (1/x)  +Σ_(n=1) ^∞     ((2x)/(x^2  +n^2 π^2 )) ⇒  coth(x)−(1/x) = Σ_(n=1) ^∞     ((2x)/(x^2  +n^2 π^2 )) .
wehaveprovedthatch(αx)=sh(πα)πα+2απsh(πα)n=1(1)nα2+n2cos(nx)x=πch(πα)=sh(πα)πα+2απsh(πα)n=11α2+n2coth(πα)=1πα+2απn=11α2+n2changementπα=xgivecoth(x)=1x+2πxπn=11x2π2+n2=1x+n=12xx2+n2π2coth(x)1x=n=12xx2+n2π2.

Leave a Reply

Your email address will not be published. Required fields are marked *