Menu Close

prove-that-csch-x-1-x-n-1-2-1-n-x-n-2-pi-2-x-2-then-find-0-cosh-x-1-x-x-dx-ln-2-




Question Number 152240 by mnjuly1970 last updated on 26/Aug/21
    prove that..     csch (x)= (1/x) + Σ_(n=1) ^∞ ((2.(−1)^( n)  x)/(n^( 2) π^( 2) + x^( 2) ))     then find:      Ω := ∫_0 ^( ∞) ((cosh (x )−(1/x))/x) dx=−ln(2)....■
provethat..csch(x)=1x+n=12.(1)nxn2π2+x2thenfind:Ω:=0cosh(x)1xxdx=ln(2).◼
Answered by Kamel last updated on 27/Aug/21
  Ω=∫_0 ^(+∞) ((cosech(x)−(1/x))/x)dx=∫_0 ^(+∞) ∫_0 ^(+∞) (((2e^(−x) )/(1−e^(−2x) ))−(1/x))e^(−tx) dxdt    =^(IBP) ∫_0 ^(+∞) (Ln(2)+t∫_0 ^(+∞) (Ln(((1−e^(−x) )/x))−Ln(1+e^(−x) ))e^(−xt) dx)dt     =∫_0 ^(+∞) (Ln(2)+t(2∫_0 ^1 Ln(1−u)u^(t−1) du−(1/2)∫_0 ^1 Ln(1−u)u^((t/2)−1) du+((γ+Ln(t))/t)))dt     =∫_0 ^(+∞) (Ln(2)+t(−(2/t)∫_0 ^1 ((u^t −1)/(u−1))du+(1/t)∫_0 ^1 ((u^(t/2) −1)/(u−1))du+((γ+Ln(t))/t)))dt    =∫_0 ^(+∞) (Ln(t)+Ψ((t/2)+1)−2Ψ(t+1)+Ln(2))dt   =lim_(t→+∞) (tLn(t)−t+2Ln(Γ((t/2)+1))−2LnΓ(t+1)+tLn(2))   =lim_(t→+∞) Ln(((t^t e^(−t) Γ^2 ((t/2)+1)2^t )/(Γ^2 (t+1))))=lim_(t→+∞) Ln(((t^(2t) πte^(−2t) )/(t^(2t) 2πte^(−2t) )))=−Ln(2)          ∴         ∫_0 ^(+∞) ((cosech(x)−(1/x))/x)dx=−Ln(2)                                      KAMEL BENAICHA
Ω=0+cosech(x)1xxdx=0+0+(2ex1e2x1x)etxdxdt=IBP0+(Ln(2)+t0+(Ln(1exx)Ln(1+ex))extdx)dt=0+(Ln(2)+t(201Ln(1u)ut1du1201Ln(1u)ut21du+γ+Ln(t)t))dt=0+(Ln(2)+t(2t01ut1u1du+1t01ut21u1du+γ+Ln(t)t))dt=0+(Ln(t)+Ψ(t2+1)2Ψ(t+1)+Ln(2))dt=limt+(tLn(t)t+2Ln(Γ(t2+1))2LnΓ(t+1)+tLn(2))=limLnt+(ttetΓ2(t2+1)2tΓ2(t+1))=limLnt+(t2tπte2tt2t2πte2t)=Ln(2)0+cosech(x)1xxdx=Ln(2)KAMELBENAICHA

Leave a Reply

Your email address will not be published. Required fields are marked *