Menu Close

prove-that-curl-r-n-c-r-n-2-r-n-c-nr-n-2-r-c-where-c-is-the-constant-vector-




Question Number 85865 by subhankar10 last updated on 25/Mar/20
prove that   curl(r^n c^→ ×r^→ )=(n+2)r^n c^→ −nr^(n−2) (r^→ .c^→ )  .  where c is the constant vector.
provethatcurl(rnc×r)=(n+2)rncnrn2(r.c).wherecistheconstantvector.
Answered by TANMAY PANACEA. last updated on 25/Mar/20
r^→ =ix+jy+kz→r^2 =x^2 +y^2 +z^2   r^n =(x^2 +y^2 +z^2 )^(n/2)   c^→ =ia+ib+kd  curlA^→ =▽^→ ×A^→   (i(∂/∂x)+j(∂/∂y)+k(∂/∂z))×A^→   now  ▽^→ ×(c^→ ×r^n r^→ )  =(▽^→ .r^n r^→ )c^→ −(▽^→ .c^→ )r^n r^→   =c^→ (i(∂/∂x)+j(∂/∂y)+k(∂/∂z)).(x^2 +y^2 +z^2 )^(n/2) (ix+jy+kz)  =c^→ [(∂/∂x){x.(x^2 +y^2 +z^2 )^(n/2) }+(∂/∂y){y(x^2 +y^2 +z^2 )}+(∂/∂z){z(x^2 +y^2 +z^2 )}]  calculation of  (∂/∂x){x(x^2 +y^2 +z^2 )^(n/2) }  =(x^2 +y^2 +z^2 )^(n/2) ×1+x×(n/2)(x^2 +y^2 +z^2 )^((n/2)−1) ×2x  =r^n +x^2 ×n(r^2 )^((n/2)−1)   =r^n +x^2 ×n×r^(n−2)   adding three  3r^n +nr^(n−2) (x^2 +y^2 +z^2 )  =3r^n +nr^n =r^n (n+3)  so answer is      r^n (n+3)c^→   timorrow i shall solve in paper                                                .=..  c^→ ×r^→   ∣i        j       k    ∣  ∣a        b       d    ∣  ∣x        y       z    ∣  =i(bz−yd)−j(az−xd)+k(ay−bx)  now  ∣i                                                        j
r=ix+jy+kzr2=x2+y2+z2rn=(x2+y2+z2)n2c=ia+ib+kdcurlA=×A(ix+jy+kz)×Anow×(c×rnr)=(.rnr)c(.c)rnr=c(ix+jy+kz).(x2+y2+z2)n2(ix+jy+kz)=c[x{x.(x2+y2+z2)n2}+y{y(x2+y2+z2)}+z{z(x2+y2+z2)}]calculationofx{x(x2+y2+z2)n2}=(x2+y2+z2)n2×1+x×n2(x2+y2+z2)n21×2x=rn+x2×n(r2)n21=rn+x2×n×rn2addingthree3rn+nrn2(x2+y2+z2)=3rn+nrn=rn(n+3)soanswerisrn(n+3)ctimorrowishallsolveinpaper.=..c×rijkabdxyz=i(bzyd)j(azxd)+k(aybx)nowij

Leave a Reply

Your email address will not be published. Required fields are marked *