prove-that-curves-x-2-y-2-3-and-xy-2-intersect-at-the-right-angle- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 147748 by Odhiambojr last updated on 23/Jul/21 provethatcurvesx2−y2=3andxy=2intersectattherightangle Commented by Olaf_Thorendsen last updated on 23/Jul/21 x2−y2=3andy=2x⇒x2−4x2=3x4−3x2−4=0x4+x2−4x2−4=0x2(x2+1)−4(x2+1)=0(x2−4)(x2+1)=0(x+2)(x−2)(x2+1)=0x=−2⇒y=2−2=−1x=+2⇒y=2+2=+1⇒2intersectionpoints:A(−2,−1)andB(+2,+1)∙pointsAandBify=2x,dydx=−2x2⇒dydx∣x=±2=−12∙pointAIfx2−y2=3,y=−x2−3dydx=−2x2x2−3=−xx2−3dydx∣x=−2=−−24−3=+2∙pointBIfx2−y2=3,y=+x2−3dydx=2x2x2−3=xx2−3dydx∣x=−2=+24−3=+2TheproductoftheslopesatAandBisequalto−1,(−12×2),thatmeansthetwocurvesinterceptatarightangle. Answered by iloveisrael last updated on 23/Jul/21 (1)x2−y2=3⇒2x−2y.y′=0⇒m1=y′=xy(2)xy=2⇒y+xy′=0⇒m2=y′=−yx∴m1×m2=−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-147747Next Next post: 2-x-2-2-x-2-4-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.