Menu Close

prove-that-curves-x-2-y-2-3-and-xy-2-intersect-at-the-right-angle-




Question Number 147748 by Odhiambojr last updated on 23/Jul/21
prove that curves x^(2 ) −y^2 =3 and   xy=2 intersect at the right angle
provethatcurvesx2y2=3andxy=2intersectattherightangle
Commented by Olaf_Thorendsen last updated on 23/Jul/21
x^2 −y^2  = 3 and y = (2/x)  ⇒ x^2 −(4/x^2 ) = 3  x^4 −3x^2 −4 = 0  x^4 +x^2 −4x^2 −4 = 0  x^2 (x^2 +1)−4(x^2 +1) = 0  (x^2 −4)(x^2 +1) = 0  (x+2)(x−2)(x^2 +1) = 0  x = −2 ⇒ y = (2/(−2)) = −1  x = +2 ⇒ y = (2/(+2)) = +1  ⇒ 2 intersection points :  A(−2,−1) and B(+2,+1)    • points A and B  if y = (2/x), (dy/dx) = −(2/x^2 ) ⇒ (dy/dx)∣_(x=±2)  = −(1/2)    • point A  If x^2 −y^2  = 3, y =−(√(x^2 −3))  (dy/dx) = ((−2x)/( 2(√(x^2 −3)))) = −(x/( (√(x^2 −3))))  (dy/dx)∣_(x=−2)  = −((−2)/( (√(4−3)))) = +2    • point B  If x^2 −y^2  = 3, y =+(√(x^2 −3))  (dy/dx) = ((2x)/( 2(√(x^2 −3)))) = (x/( (√(x^2 −3))))  (dy/dx)∣_(x=−2)  = ((+2)/( (√(4−3)))) = +2    The product of the slopes at A and B  is equal to−1, (−(1/2)×2), that means  the two curves intercept at a right  angle.
x2y2=3andy=2xx24x2=3x43x24=0x4+x24x24=0x2(x2+1)4(x2+1)=0(x24)(x2+1)=0(x+2)(x2)(x2+1)=0x=2y=22=1x=+2y=2+2=+12intersectionpoints:A(2,1)andB(+2,+1)pointsAandBify=2x,dydx=2x2dydxx=±2=12pointAIfx2y2=3,y=x23dydx=2x2x23=xx23dydxx=2=243=+2pointBIfx2y2=3,y=+x23dydx=2x2x23=xx23dydxx=2=+243=+2TheproductoftheslopesatAandBisequalto1,(12×2),thatmeansthetwocurvesinterceptatarightangle.
Answered by iloveisrael last updated on 23/Jul/21
(1)x^2 −y^2 =3  ⇒2x−2y.y′=0  ⇒m_1 = y′=(x/y)  (2)xy=2  ⇒y+xy′=0   ⇒m_2 = y′=−(y/x)  ∴ m_1 ×m_2 =−1
(1)x2y2=32x2y.y=0m1=y=xy(2)xy=2y+xy=0m2=y=yxm1×m2=1

Leave a Reply

Your email address will not be published. Required fields are marked *