Menu Close

Prove-that-d-dx-e-x-e-x-




Question Number 97972 by Aniruddha Ghosh last updated on 10/Jun/20
    Prove that,       (d/dx)(e^x ) = e^x
Provethat,ddx(ex)=ex
Answered by abdomathmax last updated on 10/Jun/20
(d/dx)(e^x ) =lim_(h→0)    ((e^(x+h) −e^x )/h)  =lim_(h→0)    e^x ×((e^h −1)/h)  we have e^h  =1+h +o(h^2 ) ⇒e^h −1=h +o(h^2 ) ⇒  ((e^h −1)/h) =1+o(h)⇒lim_(h→0)   ((e^h −1)/h)=1 ⇒  (d/dx)(e^x ) =e^x
ddx(ex)=limh0ex+hexh=limh0ex×eh1hwehaveeh=1+h+o(h2)eh1=h+o(h2)eh1h=1+o(h)limh0eh1h=1ddx(ex)=ex
Answered by MJS last updated on 10/Jun/20
(d/dx)[f(x)]=lim_(h→0)  ((f(x+h)−f(x−h))/(2h))  (d/dx)[e^x ]=lim_(h→0)  ((e^(x+h) −e^(x−h) )/(2h)) =lim_(h→0)  ((e^h −e^(−h) )/(2h))e^x  =  =e^x ×lim_(h→0)  ((sinh h)/h) =       [l′Hopital]  =e^x ×lim_(h→0) (((d/dh)[sinh h])/((d/dh)[h]))=e^x ×lim_(h→0)  cosh h =e^x
ddx[f(x)]=limh0f(x+h)f(xh)2hddx[ex]=limh0ex+hexh2h=limh0eheh2hex==ex×limh0sinhhh=[lHopital]=ex×limh0ddh[sinhh]ddh[h]=ex×limh0coshh=ex
Answered by smridha last updated on 10/Jun/20
(i)(d/dx)(e^x )=lim_(h→0)  ((e^(x+h) −e^x )/h)[just using the definetion]  [that (df/dx)=lim_(h→0) ((f(x+h)−f(x))/h)]  so we get:                      =e^x [lim_(h→0)  ((e^h −1)/h)]=e^x .1=e^x .  (ii)now do it by series expanssion   e^x =Σ_(n=0) ^∞ (x^n /(n!))=1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+.....+(x^n /(n!))+(x^(n+1) /((n+1)!))+....∞  now diff:wrt x we get  (d/dx)(e^x )=0+[1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...+(x^(n−1) /((n−1)!))+(x^n /(n!))+...∞]       =0+e^x =e^x [its remain the as it is]
(i)ddx(ex)=limh0ex+hexh[justusingthedefinetion][thatdfdx=limh0f(x+h)f(x)h]soweget:=ex[limh0eh1h]=ex.1=ex.(ii)nowdoitbyseriesexpanssionex=n=0xnn!=1+x1!+x22!+x33!+..+xnn!+xn+1(n+1)!+.nowdiff:wrtxwegetddx(ex)=0+[1+x1!+x22!+x33!++xn1(n1)!+xnn!+]=0+ex=ex[itsremaintheasitis]
Commented by MathGod last updated on 10/Jun/20
I USE THE REDDEST INK!
IUSETHEREDDESTINK!
Commented by arcana last updated on 11/Jun/20
using e^h −1−h≥0, ∀h∈R  then 1≤((e^h −1)/h)≤1  lim_(h→0)   ((e^h −1)/h)=1
usingeh1h0,hRthen1eh1h1limh0eh1h=1

Leave a Reply

Your email address will not be published. Required fields are marked *