Menu Close

Prove-that-determinant-1-1-1-a-b-c-a-2-b-2-c-2-a-b-b-c-c-a-




Question Number 175110 by nadovic last updated on 19/Aug/22
Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)
Provethat|111abca2b2c2|=(ab)(bc)(ca)
Commented by kaivan.ahmadi last updated on 19/Aug/22
 determinant (((1     1     1)),((a     b     c)),((a^2    b^2    c^2 ))) determinant (((1     1     1)),((a     b     c)),((a^2   b^2    c^2 )))=  (bc^2 +ca^2 +ab^2 )−(ba^2 +ac^2 +cb^2 )  =c(bc+a^2 −ac−b^2 )−ab(a−b)  =c(c(b−a)+(a−b)(a+b))−ab(a−b)  =(a−b)(−c^2 +ac+bc−ab)  =(a−b)(c(a−c)+b(c−a))  =(a−b)((c−a)(b−c))=  (a−b)(b−c)(c−a)  note that this is a Vandermonde  determinant.  In general case   determinant (((1      1    ...    1)),((a_(1   )  a_(2  ) ...     a_n )),((⋮   ⋮    ⋮)),((a_1 ^(n−1)   ...     a_n ^(n−1)  )))=Π_(1≤i<j≤n) (a_j −a_i )
|111abca2b2c2||111abca2b2c2|=(bc2+ca2+ab2)(ba2+ac2+cb2)=c(bc+a2acb2)ab(ab)=c(c(ba)+(ab)(a+b))ab(ab)=(ab)(c2+ac+bcab)=(ab)(c(ac)+b(ca))=(ab)((ca)(bc))=(ab)(bc)(ca)notethatthisisaVandermondedeterminant.Ingeneralcase|111a1a2ana1n1ann1|=1i<jn(ajai)
Commented by Tawa11 last updated on 19/Aug/22
Great sir.
Greatsir.
Commented by puissant last updated on 21/Aug/22
Vandermonde method
Vandermondemethod
Answered by Rasheed.Sindhi last updated on 19/Aug/22
Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)                       ∣ (/)Through properties(/) ∣       ^(−)   = determinant ((1,(    0),(   0)),(a,(b−a),(c−a)),(a^2 ,(b^2 −a^2 ),(c^2 −a^2 )))C2−C1_(C3−C1)     =(b−a)(c−a) determinant ((1,(    0),(   0)),(a,(    1),(   1)),(a^2 ,(b+a),(c+a)))  =(b−a)(c−a)∙1{1(c+a)−1(b+a)}  =(b−a)(c−a)(c−b)  =(a−b)(b−c)(c−a)
Provethat|111abca2b2c2|=(ab)(bc)(ca)Throughproperties=|100abacaa2b2a2c2a2|C2C1C3C1=(ba)(ca)|100a11a2b+ac+a|=(ba)(ca)1{1(c+a)1(b+a)}=(ba)(ca)(cb)=(ab)(bc)(ca)
Commented by puissant last updated on 21/Aug/22
Great
Great
Commented by Rasheed.Sindhi last updated on 21/Aug/22
Thanks sir!
Thankssir!
Answered by Rajpurohith last updated on 10/Jun/23
Apply the operation C_1 →C_1 −C_2  and C_2 →C_2 −C_3   The determinant reduces to,   determinant (((   0                0            1)),((a−b         b−c        c)),((a^2 −b^2      b^2 −c^2      c^2 )))=(a−b)(b−c) determinant (((0             0      1)),((1             1      c)),((a+b    b+c   c^2 )))  This is by taking the common factors from C_1  & C_2   and operate C_1 →C_1 −C_2   =(a−b)(b−c) determinant (((0              0        1)),((0           1          c)),((a−c    b+c    c^2 )))  expanding along the first row,  =(a−b)(b−c)(c−a)
ApplytheoperationC1C1C2andC2C2C3Thedeterminantreducesto,|001abbcca2b2b2c2c2|=(ab)(bc)|00111ca+bb+cc2|ThisisbytakingthecommonfactorsfromC1&C2andoperateC1C1C2=(ab)(bc)|00101cacb+cc2|expandingalongthefirstrow,=(ab)(bc)(ca)

Leave a Reply

Your email address will not be published. Required fields are marked *