Menu Close

Prove-that-determinant-1-1-1-a-b-c-a-2-b-2-c-2-a-b-b-c-c-a-




Question Number 175110 by nadovic last updated on 19/Aug/22
Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)
$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$
Commented by kaivan.ahmadi last updated on 19/Aug/22
 determinant (((1     1     1)),((a     b     c)),((a^2    b^2    c^2 ))) determinant (((1     1     1)),((a     b     c)),((a^2   b^2    c^2 )))=  (bc^2 +ca^2 +ab^2 )−(ba^2 +ac^2 +cb^2 )  =c(bc+a^2 −ac−b^2 )−ab(a−b)  =c(c(b−a)+(a−b)(a+b))−ab(a−b)  =(a−b)(−c^2 +ac+bc−ab)  =(a−b)(c(a−c)+b(c−a))  =(a−b)((c−a)(b−c))=  (a−b)(b−c)(c−a)  note that this is a Vandermonde  determinant.  In general case   determinant (((1      1    ...    1)),((a_(1   )  a_(2  ) ...     a_n )),((⋮   ⋮    ⋮)),((a_1 ^(n−1)   ...     a_n ^(n−1)  )))=Π_(1≤i<j≤n) (a_j −a_i )
$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}= \\ $$$$\left({bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} +{ab}^{\mathrm{2}} \right)−\left({ba}^{\mathrm{2}} +{ac}^{\mathrm{2}} +{cb}^{\mathrm{2}} \right) \\ $$$$={c}\left({bc}+{a}^{\mathrm{2}} −{ac}−{b}^{\mathrm{2}} \right)−{ab}\left({a}−{b}\right) \\ $$$$={c}\left({c}\left({b}−{a}\right)+\left({a}−{b}\right)\left({a}+{b}\right)\right)−{ab}\left({a}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left(−{c}^{\mathrm{2}} +{ac}+{bc}−{ab}\right) \\ $$$$=\left({a}−{b}\right)\left({c}\left({a}−{c}\right)+{b}\left({c}−{a}\right)\right) \\ $$$$=\left({a}−{b}\right)\left(\left({c}−{a}\right)\left({b}−{c}\right)\right)= \\ $$$$\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$${note}\:{that}\:{this}\:{is}\:{a}\:{Vandermonde} \\ $$$${determinant}. \\ $$$${In}\:{general}\:{case} \\ $$$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:…\:\:\:\:\mathrm{1}}\\{{a}_{\mathrm{1}\:\:\:} \:{a}_{\mathrm{2}\:\:} …\:\:\:\:\:{a}_{{n}} }\\{\vdots\:\:\:\vdots\:\:\:\:\vdots}\\{{a}_{\mathrm{1}} ^{{n}−\mathrm{1}} \:\:…\:\:\:\:\:{a}_{{n}} ^{{n}−\mathrm{1}} \:}\end{vmatrix}=\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\prod}\left({a}_{{j}} −{a}_{{i}} \right) \\ $$
Commented by Tawa11 last updated on 19/Aug/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by puissant last updated on 21/Aug/22
Vandermonde method
$${Vandermonde}\:{method} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Aug/22
Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)                       ∣ (/)Through properties(/) ∣       ^(−)   = determinant ((1,(    0),(   0)),(a,(b−a),(c−a)),(a^2 ,(b^2 −a^2 ),(c^2 −a^2 )))C2−C1_(C3−C1)     =(b−a)(c−a) determinant ((1,(    0),(   0)),(a,(    1),(   1)),(a^2 ,(b+a),(c+a)))  =(b−a)(c−a)∙1{1(c+a)−1(b+a)}  =(b−a)(c−a)(c−b)  =(a−b)(b−c)(c−a)
$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overline {\:\:\:\:\:\:\:\:\underline{\mid}\:\underline{\frac{}{}\boldsymbol{\mathrm{Through}}\:\boldsymbol{\mathrm{properties}}\frac{}{}\:\mid}\:\:\:\:\:\:\:} \\ $$$$=\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{{b}−{a}}&{{c}−{a}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }&{{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }\end{vmatrix}\underset{\mathrm{C3}−\mathrm{C1}} {\mathrm{C2}−\mathrm{C1}} \\ $$$$ \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{\:\:\:\:\mathrm{1}}&{\:\:\:\mathrm{1}}\\{{a}^{\mathrm{2}} }&{{b}+{a}}&{{c}+{a}}\end{vmatrix} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\centerdot\mathrm{1}\left\{\mathrm{1}\left({c}+{a}\right)−\mathrm{1}\left({b}+{a}\right)\right\} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\left({c}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$
Commented by puissant last updated on 21/Aug/22
Great
$${Great} \\ $$
Commented by Rasheed.Sindhi last updated on 21/Aug/22
Thanks sir!
$$\mathcal{T}{hanks}\:{sir}! \\ $$
Answered by Rajpurohith last updated on 10/Jun/23
Apply the operation C_1 →C_1 −C_2  and C_2 →C_2 −C_3   The determinant reduces to,   determinant (((   0                0            1)),((a−b         b−c        c)),((a^2 −b^2      b^2 −c^2      c^2 )))=(a−b)(b−c) determinant (((0             0      1)),((1             1      c)),((a+b    b+c   c^2 )))  This is by taking the common factors from C_1  & C_2   and operate C_1 →C_1 −C_2   =(a−b)(b−c) determinant (((0              0        1)),((0           1          c)),((a−c    b+c    c^2 )))  expanding along the first row,  =(a−b)(b−c)(c−a)
$${Apply}\:{the}\:{operation}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \:{and}\:{C}_{\mathrm{2}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} \\ $$$${The}\:{determinant}\:{reduces}\:{to}, \\ $$$$\begin{vmatrix}{\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{{a}−{b}\:\:\:\:\:\:\:\:\:{b}−{c}\:\:\:\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\:\:\:\:{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \:\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix}=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:{c}}\\{{a}+{b}\:\:\:\:{b}+{c}\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${This}\:{is}\:{by}\:{taking}\:{the}\:{common}\:{factors}\:{from}\:{C}_{\mathrm{1}} \:\&\:{C}_{\mathrm{2}} \\ $$$${and}\:{operate}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:{c}}\\{{a}−{c}\:\:\:\:{b}+{c}\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${expanding}\:{along}\:{the}\:{first}\:{row}, \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *