Menu Close

Prove-that-determinant-3-a-b-c-a-2-b-2-c-2-a-b-c-a-2-b-2-c-2-a-3-b-3-c-3-a-2-b-2-c-2-a-3-b-3-c-3-a-4-b-4-c-4-a-b-2-b-c-2-c-a-2-




Question Number 30783 by math1967 last updated on 25/Feb/18
Prove that determinant ((3,(a+b+c),(a^2 +b^2 +c^2 )),((a+b+c),(a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 )),((a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 ),(a^4 +b^4 +c^4 )))  =(a−b)^2 (b−c)^2 (c−a)^2
Provethat|3a+b+ca2+b2+c2a+b+ca2+b2+c2a3+b3+c3a2+b2+c2a3+b3+c3a4+b4+c4|=(ab)2(bc)2(ca)2
Answered by math1967 last updated on 27/Feb/18
Find determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 )) determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))  then expand  determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))
Find|111abca2b2c2||111abca2b2c2|thenexpand|111abca2b2c2|

Leave a Reply

Your email address will not be published. Required fields are marked *