Menu Close

Prove-that-determinant-3-a-b-c-a-2-b-2-c-2-a-b-c-a-2-b-2-c-2-a-3-b-3-c-3-a-2-b-2-c-2-a-3-b-3-c-3-a-4-b-4-c-4-a-b-2-b-c-2-c-a-2-




Question Number 30783 by math1967 last updated on 25/Feb/18
Prove that determinant ((3,(a+b+c),(a^2 +b^2 +c^2 )),((a+b+c),(a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 )),((a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 ),(a^4 +b^4 +c^4 )))  =(a−b)^2 (b−c)^2 (c−a)^2
$${Prove}\:{that}\begin{vmatrix}{\mathrm{3}}&{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\\{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\\{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }&{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} }\end{vmatrix} \\ $$$$=\left({a}−{b}\right)^{\mathrm{2}} \left({b}−{c}\right)^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} \\ $$
Answered by math1967 last updated on 27/Feb/18
Find determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 )) determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))  then expand  determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))
$${Find}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${then}\:{expand}\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *