Menu Close

prove-that-dx-1-x-2-ln-x-1-x-2-c-2-find-dx-a-x-2-with-a-gt-0-




Question Number 38124 by maxmathsup by imad last updated on 22/Jun/18
prove that  ∫      (dx/( (√(1+x^2 )))) =ln(x+(√(1+x^2 ))) +c  2) find ∫   (dx/( (√(a+x^2 )))) with a>0
$${prove}\:{that}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:+{c} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{{a}+{x}^{\mathrm{2}} }}\:{with}\:{a}>\mathrm{0} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
y=ln(x+(√(1+x^2  ))) +c  (dy/dx)=(1/(x+(√(1+x^2 )) ))×(1+((2x)/(2(√(1+x^2 )) )))  =(1/(x+(√(1+x^2 ))))×((x+(√(1+x^2  )))/( (√(1+x^2 ))))  =(1/( (√(1+x^2 ))))  dy=(dx/( (√(1+x^2 ))))  y=∫(dx/( (√(1+x^2 ))))
$${y}={ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \:\right)}\:+{c}\right. \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:}×\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:}\right) \\ $$$$=\frac{\mathrm{1}}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}×\frac{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${dy}=\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${y}=\int\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *