Menu Close

prove-that-e-2-3-gt-13-2-6-2-




Question Number 147183 by mathdanisur last updated on 18/Jul/21
prove that  e^((√2) + (√3))  > ((13 + 2(√6))/2)
provethate2+3>13+262
Answered by mindispower last updated on 18/Jul/21
⇔e^((√2)+(√3)) >1+3+(1/2)(5+2(√6))(E)  we show (√2)+(√3)>3...(1)  ⇒5+2(√6)>9  ⇒(√6)>2..true  if e^((√2)+(√3)) >1+(√2)+(√3)+(1/2)((√5)+2(√6)) This  5+2(√6)=((√2)+(√3))^2   ⇒(E) True  let t=(√2)+(√3)  f(x)=e^x −1−x−(x^2 /2)  x>0,just using e^x =Σ_(k=0) ^∞ (x^k /(k!))  ⇒f(x)=Σ_(n=3) ^∞ (x^n /(n!))>0  ⇒f(t)>0⇔e^t >1+t+(t^2 /2),t=(√2)+(√3)>3  ⇒e^((√2)+(√3)) >1+3+(1/2)(5+2(√6))=((13+2(√6))/2)
e2+3>1+3+12(5+26)(E)weshow2+3>3(1)5+26>96>2..trueife2+3>1+2+3+12(5+26)This5+26=(2+3)2(E)Truelett=2+3f(x)=ex1xx22x>0,justusingex=k=0xkk!f(x)=n=3xnn!>0f(t)>0et>1+t+t22,t=2+3>3e2+3>1+3+12(5+26)=13+262
Commented by mathdanisur last updated on 19/Jul/21
thanks Ser cool
thanksSercool
Commented by mindispower last updated on 19/Jul/21
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *