Menu Close

Prove-that-e-i-1-e-i-2-e-i-2-




Question Number 128805 by bramlexs22 last updated on 10/Jan/21
 Prove that e^(iθ) +1 = e^(−((iθ)/2))  + e^((iθ)/2)  ?
Provethateiθ+1=eiθ2+eiθ2?
Commented by mr W last updated on 10/Jan/21
LHS=(1+cos θ)+i sin θ  RHS=2 cos (θ/2)  LHS≠RHS !
LHS=(1+cosθ)+isinθRHS=2cosθ2LHSRHS!
Answered by benjo_mathlover last updated on 10/Jan/21
 e^(iθ) +1 = cos θ+i sin θ +1   e^(−((iθ)/2))  = cos (θ/2)−i sin (θ/2)   e^((iθ)/2)  = cos (θ/2) +i sin (θ/2)    e^(−((iθ)/2))  + e^((iθ)/2)  = 2cos (θ/2) ≠ 1+cos θ+i sin θ
eiθ+1=cosθ+isinθ+1eiθ2=cosθ2isinθ2eiθ2=cosθ2+isinθ2eiθ2+eiθ2=2cosθ21+cosθ+isinθ

Leave a Reply

Your email address will not be published. Required fields are marked *