Menu Close

Prove-that-e-ipi-1-0-




Question Number 29049 by NECx last updated on 03/Feb/18
Prove that       e^(iπ) +1=0
$${Prove}\:{that} \\ $$$$\:\:\:\:\:{e}^{{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$
Answered by Penguin last updated on 03/Feb/18
e^(iθ) =cos(θ)+isin(θ)  θ=π  ∴e^(iπ) =−1+i(0)  =−1
$${e}^{{i}\theta} =\mathrm{cos}\left(\theta\right)+{i}\mathrm{sin}\left(\theta\right) \\ $$$$\theta=\pi \\ $$$$\therefore{e}^{{i}\pi} =−\mathrm{1}+{i}\left(\mathrm{0}\right) \\ $$$$=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *